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Preliminaries

Sn denotes the symmetric group on [n] = {1, . . . , n}

Definition

Let w ∈ Sn. The entry i ∈ [n] is an exceedance of w if w(i) > i .
For an exceedance i of w , the exceedance size of i is w(i)− i .
The entry i ∈ [n] is a descent of w if w(i) > w(i + 1).

Consider

w =

(
1 2 3 4 5
2 5 1 4 3

)
= [2, 5, 1, 4, 3] ∈ S5.

The exceedances are 1 and 2. The exceedance sizes are 2− 1 = 1
and 5− 2 = 3. The descents of w are 2 and 4.
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Sorting by transpositions

One can imagine various “machines” that can sort permutations
(to the identity) by swapping pairs of entries.

Machine `: Can only swap adjacent entries, and every move
costs 1.

Machine a: Can swap arbitrary pairs of entries, and every move
costs 1.

Machine d : Can swap arbitrary pairs of entries, and a move costs
the distance between the entries.

Question

Can we look at a permutation and easily tell the minimum cost to
sort it?
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Inversions

Machine `

For Machine `, the answer is called the length of the permutation,
and it is equal to the number of inversions:

inv(w) = |{(i , j) ∈ [n]× [n] | i < j and w(i) > w(j)}|.

One optimal algorithm is to always swap the rightmost descent.

For w = 2431756, we have

2431756
(56)→ 2431576

(67)→ 2431567
(34)→ 2413567

(23)→ 2143567
(34)→ 2134567

(12)→ 1234567

So w = (12)(34)(23)(34)(67)(56), in fact w has 6 inversions.
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Cycles

Machine a

For Machine a, the answer is called the absolute length, and it is
equal to n minus the number of cycles.

One optimal algorithm (called straigh selection sort by Knuth) is
to always swap the largest misplaced entry to its correct location.

For w = 2431756, we have

2431756
(57)→ 2431657

(56)→ 2431567
(24)→ 2134567

(12)→ 1234567

We obtain w = 2431756 = (12)(24)(56)(57) = (124)(3)(576), and
so a(w) = 4 = n −#cycles.
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Straigh selection sort does not work for machine d

In the previous example w = 2431756 = (12)(24)(56)(57) so

(7− 5) + (6− 5) + (4− 2) + (2− 1) = 6

is the cost by using machine d .

straight selection sort optimizes the number of transpositions
needed to sort a permutation

but it does not necessarily optimize the cost.

In fact for 2431756 = (12)(24)(67)(56) we have

(6− 5) + (7− 6) + (4− 2) + (2− 1) = 5 < 6.

We can show that 5 is the lowest possible cost for such a w .
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Sum of the sizes of exceedances

Machine d

For Machine d , the answer is called the depth. In 2015,
Petersen–Tenner showed that it is equal to the sum of the sizes
of exceedances, i.e.

d(w) =
∑

w(i)>i

(w(i)− i).

They defined an optimal algorithm that given w ∈ Sn:

finds an expression w = t1 · · · tr that realizes the depth of w ;

produces an expression with r = a(w) transpositions.
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Petersen –Tenner algorithm in Sn

w = 2431756

(67)· ↓ ·(57)

2431657

(56)· ↓ ·(56)

2431567

(14)· ↓ ·(24)

2134567

(12)· ↓ ·(12)

e = 1234567

The associated expression for
w = 2431756 is

w = (67)(12)(24)(56)

hence d(w) = 5, which coin-
cides with

d(w) =
∑

w(i)>i

(w(i)− i)

= (2− 1) + (4− 2) + (7− 5) = 5.
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From machines to Coxeter groups theory

Let (W ,S) be a Coxeter system. Namely :

S is a set of generators of the Coxeter group W

the elements of S are involutions

all the relations are of the form (st)mst = 1, where mst ∈ N

These relations can be rewritten as s2 = 1 for all s ∈ S , and

sts · · ·︸ ︷︷ ︸
mst

= tst · · ·︸ ︷︷ ︸
mst

,

where mst <∞, the latter being called braid relations.

When mst = 2, they are simply commutation relations st = ts.
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Finite irreducible Coxeter systems

Theorem (Coxeter, 1934)

List of all the finite irreducible Coxeter groups.

4

s1 sn−1 t s1 s1 sn−1

t1

t2

sn−1
An−1 Bn

Dn+1

s2 s2 s2

I2(m)

m

H3 H4

E7E6 E8

F4

4 5 5

Classification by Dynkin diagrams
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Reduced expressions

Any element w ∈W can be written as w = s1 · · · sk , with si ∈ S .

Length

`(w) = min{k ∈ N | w = s1 · · · sk for si ∈ S}

An expression w = s1 · · · sk of minimal length is called reduced.

Set of reflections of W

T = {wsw−1 | s ∈ S ,w ∈W }.

Absolute length

a(w) = min{k ∈ N | w = t1 · · · tk for ti ∈ T}
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Bruhat graph and weak order

Bruhat graph

The Bruhat graph is the directed graph whose nodes are the
elements of W and whose edges are given by :

u
t→ w means that w = ut for some t ∈ T , and `(u) < `(w).

Bruhat order

The Bruhat order is the transitive closure of the primitive

relations u
t→ ut, where t ∈ T .

Weak order

The (right) weak order is the transitive closure of the primitive
relations u

s→ us, where s ∈ S .
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Symmetric group

The symmetric group is a Coxeter group of type An−1

s s s s s1 2 3 n⌧2 n⌧1

S = {s1, . . . , sn−1} with si = (i , i + 1) is the simple
transposition exchanging i and i + 1.

s2
i = Id
si si+1si = si+1si si+1

si sj = sjsi if |i − j | ≥ 2

The set of reflections is T = {tij = (i , j) | 1 ≤ i < j ≤ n},
where (i , j) is the transposition exchanging i and j .
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Symmetric group : Bruhat graph

e = 123

s1 = 213s2 = 132

s1s2 = 231s2s1 = 312

s1s2s1 = s2s1s2 = 321

Bruhat graph of S3

(12)

(23) (12)

(23)

(12)(23)

(13)

(13)

(13)

Bruhat order on S3 Weak order on S3

The length ` is the rank function of such posets.

The edges are labeled by reflections.
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Algebraic motivation : depth in terms of roots

Let Φ = Φ+ ∪ Φ− be the root system for (W ,S).

The depth dp(β) of a positive root is a well-known parameter.

Since there is

a bijection between Φ+ and T : β 7→ tβ

by letting d(tβ) = dp(β) =
1+`(tβ)

2 (costs of the machine d)

Petersen and Tenner defined

Definition of depth

d(w) = min

{
k∑

i=1

1 + `(ti )

2
| w = t1 · · · tk for ti ∈ T

}
.
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Undirected paths in the weighted Bruhat graph

This means that the depth of w

is equal to the minimal cost of an

t −→ (1 + `(t))/2

in the Bruhat graph of W

where each edge is labeled by

undirected path going from e to w

e = 123

s1 = 213s2 = 132

s1s2 = 231
s2s1 = 312

s1s2s1 = s2s1s2 = 321

Undirected Bruhat graph of S3

1

1

1 1

1

1

2

2 2

Riccardo Biagioli (Lyon 1) Eli Bagno, Mordechai Novick (Jerusalem College of Tech.) and Alexander Woo (U. Idaho)

Depth in classical Coxeter groups



Sorting permutations Signed Permutations Comparing Costs

Undirected paths in the weighted Bruhat order

This means that the depth of w

is equal to the minimal cost of an

t −→ (1 + `(t))/2

in the Bruhat graph of W

where each edge is labeled by

undirected path going from e to w

e = 123

s1 = 213s2 = 132

s1s2 = 231
s2s1 = 312

s1s2s1 = s2s1s2 = 321

Undirected Bruhat graph of S3

1

1

1 1

1

1

2

2 2

Riccardo Biagioli (Lyon 1) Eli Bagno, Mordechai Novick (Jerusalem College of Tech.) and Alexander Woo (U. Idaho)

Depth in classical Coxeter groups



Sorting permutations Signed Permutations Comparing Costs

Undirected paths in the weighted Bruhat order

This means that the depth of w

is equal to the minimal cost of an

t −→ (1 + `(t))/2

in the Bruhat graph of W

where each edge is labeled by

undirected path going from e to w

e = 123

s1 = 213s2 = 132

s1s2 = 231
s2s1 = 312

s1s2s1 = s2s1s2 = 321

Undirected Bruhat graph of S3

1

1

1 1

1

1

2

2 2

Riccardo Biagioli (Lyon 1) Eli Bagno, Mordechai Novick (Jerusalem College of Tech.) and Alexander Woo (U. Idaho)

Depth in classical Coxeter groups



Sorting permutations Signed Permutations Comparing Costs

Cost Coincidences

Petersen and Tenner observed that

a(w) ≤ a(w) + `(w)

2
≤ d(w) ≤ `(w).

The permutations for which d(w) = `(w) are the 321
avoiding permutations.

The permutations for which d(w) = a(w) (and hence
a(w) = `(w)) are the 321 and 3412 avoiding permutations.

It seems like a hard problem to characterize the permutations
for which d(w) = (a(w) + `(w))/2 by pattern avoidance.
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Petersen-Tenner questions

Let (W ,S) be a Coxeter group, and B(W ) its associated directed
Bruhat graph.

Question

Is it true that

d(w) = min
{∑k

i=1 di | ∃ e
d1→ · · · dk→ w in B(W )} ?

And if so, can be the path chosen so that it has a(w) edges ?

Question

Are there explicit formulas for depth for Coxeter groups of types B

and D ?
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The group of signed permutations Bn

A signed permutation is a permutation w on the set
{±1, . . . ,±n} with the property that w(−i) = −w(i) for all i .

To define a signed permutations it suffices to specify w(i) for
i > 0. For example [3̄, 5, 1, 4̄, 2̄] ∈ B5.

The Dynkin diagram of type Bn is :

s s s s s s0 1 2 3 n−2 n−1

4

The group Bn has a combinatorial interpretation in terms of signed
permutations.
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Coxeter group of type B

s s s s s s0 1 2 3 n−2 n−1

4

Set

s0 := [1, 2, . . . , n] = (−1, 1),

si := [1, . . . , i − 1, i + 1, i , i + 2, . . . , n] = (i , i + 1)(−i ,−i − 1),

and SB := {s0, s1, . . . , sn−1}

Then (Bn,SB) forms a Coxeter system of type B.
For example

B2 = {[1, 2], [1̄, 2], [1, 2̄], [1̄, 2̄], [2, 1], [2̄, 1], [2, 1̄], [2̄, 1̄]}.
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Depth machine for Bn

The set of reflections of Bn is given by

T = {tij , tī j | 1 ≤ i < j ≤ n} ∪ {tī i | i ∈ [n]},

where tij = (i , j)(ī , j̄), tī j = (ī , j)(i , j̄) and tī i = (ī , i).

Machine d can :

Shuffling (tij) : swap a pair of entries at positions i and j ,
with cost j − i (as for the symmetric group)

Double unsigning (tī j) : swap a pair of entries at positions i
and j and change both signs, with cost i + j − 1

Single unsigning (tī i ) : change the sign of the entry at
position i , with cost i .
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Oddness of a signed permutation

First decompose the signed permutation as sum (⊕) of
indecomposable signed permutations (by ignoring the signs).

For example 24̄36̄75̄1 is indecomposable while
24̄31̄75̄6 = 24̄31̄⊕ 31̄2 is the sum decomposition.

Definition

Given a signed permutation w , define the oddness of w to be the
number of blocks in the sum decomposition with an odd number
of signed elements, denoted o(w).

The negative identity 1̄ · · · n̄ is the oddest element, with oddness n.

In the previous example o(24̄31̄75̄6) = 24̄31̄⊕ 31̄2 = 1.
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Depth for a signed permutation

Theorem (BBNW, 2016)

Let w ∈ Bn. Then

d(w) =
∑

w(i)>i

(w(i)− i) +
∑

w(i)<0

|w(i)|+ o(w)− neg(w)

2
.

Single unsigning moves are slightly expensive, and o(w) counts
how many times they need to be used.
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Algorithm for signed permutations

To sort a signed permutation w using the minimum depth, we do
the following to each block in the sum decomposition:

1. If possible apply a shuffling move to positions i and j , where
x = w(i) is the largest positive entry in w with x > i , and
y = w(j) is the smallest entry in w with i < j ≤ x . Repeat
this step until there is no positive entry x = w(i) with x > i .

2. If there are at least two negative entries, apply a double
unsigning move at positions i and j , where x = w(i) and
y = w(j) are the two negative entries of largest absolute value
in w , and go back to Step 1.

3. If there is one negative entry, apply a single unsigning move
the negative entry, and go back to Step 1.
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Restriction to Sn : application of Step 1.

Petersen − Tenner

w = 2431756

(67)· ↓
2431657

↓ ·(56)

2431567

↓ ·(24)

2134567

(12)· ↓
e = 1234567

New algorithm

w = 2431756

↓ ·(56)

2431576

↓ ·(67)

2431567

↓ ·(24)

2134567

↓ ·(12)

e = 1234567
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Example of the algorithm : Steps 1,2,3

For w = 24̄31̄75̄6 = [24̄31̄]⊕ [31̄2], the formula

d(w) =
∑

w(i)>i

(w(i)− i) +
∑

w(i)<0

|w(i)|+ o(w)− neg(w)

2

gives d(w) = (1 + 2) + (4 + 1 + 5) + (1− 3)/2 = 12

We apply the algorithm separately to the two blocks:

24̄31̄ 75̄6
t45→
1

24̄31̄ 5̄76
t67→
1

24̄31̄ 5̄67
t5̄5→
5

24̄31̄ 567

t12→
1

4̄231̄ 567
t1̄4→
4

1234567
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Increasing paths, reduced factorizations, and weak order

Our algorithms provide factorizations

w = t1 · · · tk such that d(w) = d(t1) + · · ·+ d(tk)

with the properties that:

e
d1→ t1

d2→ t1t2
d3→ . . .

dk→ w is an increasing path in the
directed Bruhat graph;

k 6= a(w) (different from Petersen–Tenner);

`(w) = `(t1) + · · ·+ `(tk). When this happens we say that
the depth is realized by a reduced factorization;

Moreover e <R t1 <R t1t2 <R . . . <R t1t2 · · · tk , where <R

denotes the right weak order.
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Directed paths in the weighted Bruhat order

e = 123

s1 = 213s2 = 132

s1s2 = 231s2s1 = 312

s1s2s1 = s2s1s2 = 321

Directed Bruhat graph of S3

1

1

1 1

1

1

2

2 2

e = 123

s1 = 213s2 = 132

s1s2 = 231s2s1 = 312

s1s2s1 = s2s1s2 = 321

Directed Weak graph of S3

1

1

1 1

1

1

2
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Comparing length and depth

An element in a Coxeter group (W , S) is short-braid-avoiding if
no reduced decomposition (product of simple reflections realizing
w) has a consecutive subexpression si sjsi , with si , sj ∈ S .

Theorem (BBNW, 2016)

Let (W ,S) any Coxeter system. Then d(w) = `(w) if and only if
the depth of w is realized by a reduced factorization and w is
short-braid-avoiding.

Since the depth is always realized by a reduced factorization in Sn
and Bn, this shows that d(w) = `(w) in those groups if and only if
w is short-braid-avoiding.
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Short-braid-avoidance in Sn, Bn, and Dn

In 1995, Billey-Jockusch-Stanley showed that a permutation is
321-avoiding if and only if is short-braid avoiding. Such
permutations are usually called fully commutative.

For permutations, this reproves the Petersen–Tenner theorem that
d(w) = `(w) if and only if w is 321-avoiding.

In Bn, short-braid-avoiding is equivalent to Stembridge’s notion of
fully commutative top-and-bottom, which is characterized by
avoiding 12, 12, 21, 321, 321, and 321.
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Achieving the lower bound

Definition

An element w ∈W is boolean, if some (and hence any) reduced
decomposition of w has no repeated simple reflections.

Theorem

We have that a(w) = d(w) (and hence both are equal to `(w)) if
and only of w is boolean. These elements are characterized by
avoiding 10 patterns for Bn (Tenner).

The more general question of when d(w) = (a(w) + `(w))/2
seems hard and is not characterized by pattern avoidance.
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Problems

How many elements of Bn and Dn have depth k ?

Characterize depth for elements in affine Coxeter groups.

Is depth universally realized by reduced factorizations for all
Coxeter groups? If so, is there a uniform proof ? If not, can
one characterize the elements whose depth is realized by a
reduced factorization ?

Is depth the rank function of an interesting poset ?
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The End

Thank you for your attention!
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The group Dn

Dn = {w ∈ Bn | neg(w) ≡ 0 (mod) 2}.

The set of reflections of Dn is given by

T = {tij , tī j | 1 ≤ i < j ≤ n}.

Machine d can :

Shuffling (tij) : swap a pair of entries at positions i and j ,
with cost j − i (as for the symmetric group)

Double unsigning (tī j) : swap a pair of entries at positions i
and j and change both signs, with cost i + j − 2 (1 less then
type B)

Single unsigning (tī i ) : are banned !
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Sum decompositions for Dn

For Dn, we need to distinguish between two types of sum
decompositions. A type D decomposition requires that each
block has an even number of negative entries, while a type B
decomposition does not.

If w = 21345786, then
w = 21345⊕ 231 is the type D decomposition,
w = 21⊕ 1⊕ 1⊕ 1⊕ 231 is the type B decomposition.

Definition

Define oddness in type D (denoted oD(w)) as the number of type
B blocks minus the number of type D blocks (so oD(w) = 3).
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Depth for an even signed permutation

Theorem (BBNW, 2015)

Let w ∈ Dn. Then

d(w) =

 ∑
w(i)>i

(w(i)− i)

+

 ∑
w(i)<0

|w(i)|

+
(
oD(w)− neg(w)

)

The D-oddness counts the “wasted” moves that are needed to join
type B blocks so that we can perform the needed double unsigning
moves.
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Example in type D

[3, 1̄, 2, 6, 5̄, 4]
t45→ [3, 1̄, 2, 5̄, 6, 4]

t56→ [3, 1̄, 2, 5̄, 4, 6]

Unite two B-blocks :
t34→ [3, 1̄, 5̄, 2, 4, 6]

Shuffle inside the united block (which is now B-indecomposable):

t13→ [5̄, 1̄, 3, 2, 4, 6]

Then double unsign:

t1̄2→ [1, 5, 3, 2, 4, 6]

and shuffle toward the end:

t24→ [1, 2, 3, 5, 4, 6]
t45→ [1, 2, 3, 4, 5, 6]
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Depth of a positive root

Let Φ = Φ+ ∪ Φ− be the root system for (W ,S) and ∆ the
simple roots.
The depth dp(β) of a positive root β ∈ Φ+ is defined as

dp(β) = min{k | s1 · · · sk(β) ∈ Φ−, sj ∈ S}.

The depth is the rank function of the root poset. For An−1,
Φ+ = {ej − ei | 1 ≤ i < j ≤ n}, ∆ = {αi = ei+1 − ei | i ∈ [n− 1]}.
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Depth in terms of roots

There is a bijection between positive roots and reflections,

Φ+ ←→ T

and denote by tβ the reflection corresponding to the root β.

Definition (Depth of w ∈W )

For any w ∈W Petersen and Tenner defined

d(w) = min

{
k∑

i=1

dp(βi ) | w = tβ1 · · · tβk , tβi ∈ T

}
.
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Algebraic meaning and algebraic motivation

Since for any reflection one has

d(tβ) = dp(β) =
1 + `(tβ)

2
,

then

d(w) = min

{
k∑

i=1

1 + `(ti )

2
| w = t1 · · · tk for ti ∈ T

}
.
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