Computing with Ordinary Differential Equations

Olivier Bournez Daniel Graça¹ Amaury Pouly²

Ecole Polytechnique Laboratoire d'Informatique de l'X Palaiseau, France

> GDR-IM March 2017

¹Université d'Algarve, Portugal ²Postdoc, MPI, Allemagne

Figure 1. A simple planimeter.

We start from

³With y_0 , and coefficients among 0, 1, -1.

We start from

■ 0, 1, -1

³With y_0 , and coefficients among 0, 1, -1.

We start from

- **■** 0, 1, −1
- and we consider projections of solutions of ordinary differential equations of type

$$\begin{cases} y(0) = y_0 \\ y'(t) = p(y(t)) \end{cases}$$

where p is a (vector of) polynomials³

³With y_0 , and coefficients among 0, 1, -1.

We start from

- **■** 0, 1, −1
- and we consider projections of solutions of ordinary differential equations of type

$$\begin{cases} y(0) = y_0 \\ y'(t) = p(y(t)) \end{cases}$$

where p is a (vector of) polynomials³

Terminology:

- Such a function $f(t) = y_1(t)$ will be said to be generated.
- \blacksquare f(1) will then be called a (pODE) computable real.

³With y_0 , and coefficients among 0, 1, -1.

We start from

- **■** 0, 1, −1
- and we consider projections of solutions of ordinary differential equations of type

$$\begin{cases} y(0) = y_0 \\ y'(t) = p(y(t)) \end{cases}$$

where p is a (vector of) polynomials³

Terminology:

- Such a function $f(t) = y_1(t)$ will be said to be generated.
- \blacksquare f(1) will then be called a (pODE) computable real.

 $^{^{3}}$ With y_{0} , and coefficients among 0, 1, -1.

Menu

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Descriptive Algorithmic Science

In Case of Turing Nostalgy

Conclusions

 \blacksquare exp is the solution of y' = y, y(0) = 1.

- \blacksquare exp is the solution of y' = y, y(0) = 1.
- \bullet is exp(1).

- \blacksquare exp is the solution of y' = y, y(0) = 1.
- \bullet is exp(1).
- tanh is the solution of $y' = 1 y^2$, y(0) = 1.

- \blacksquare exp is the solution of y' = y, y(0) = 1.
- \blacksquare e is exp(1).
- tanh is the solution of $y' = 1 y^2$, y(0) = 1.
- sin is the first projection of $y' = (y'_1, y'_2) = (y_2, -y_1)$, y(0) = (0, 1).

- \blacksquare exp is the solution of y' = y, y(0) = 1.
- \bullet is exp(1).
- tanh is the solution of $y' = 1 y^2$, y(0) = 1.
- sin is the first projection of $y' = (y'_1, y'_2) = (y_2, -y_1)$, y(0) = (0, 1).
- cos its second projection.

- \blacksquare exp is the solution of y' = y, y(0) = 1.
- \bullet is exp(1).
- tanh is the solution of $y' = 1 y^2$, y(0) = 1.
- sin is the first projection of $y' = (y'_1, y'_2) = (y_2, -y_1)$, y(0) = (0, 1).
- cos its second projection.
- sinh is the first projection of $y' = (y_2, y_1)$, y(0) = (0, 1).

- \blacksquare exp is the solution of y' = y, y(0) = 1.
- \bullet is exp(1).
- tanh is the solution of $y' = 1 y^2$, y(0) = 1.
- sin is the first projection of $y' = (y'_1, y'_2) = (y_2, -y_1)$, y(0) = (0, 1).
- cos its second projection.
- \blacksquare sinh is the first projection of $y'=(y_2,y_1), y(0)=(0,1).$
- cosh its second projection.

- \blacksquare exp is the solution of y' = y, y(0) = 1.
- \blacksquare e is exp(1).
- tanh is the solution of $y' = 1 y^2$, y(0) = 1.
- sin is the first projection of $y' = (y'_1, y'_2) = (y_2, -y_1)$, y(0) = (0, 1).
- cos its second projection.
- \blacksquare sinh is the first projection of $y'=(y_2,y_1),\ y(0)=(0,1).$
- cosh its second projection.
- \blacksquare $\frac{1}{1+t}$ is the solution of $y'=-y^2$, y(0)=1

- \blacksquare exp is the solution of y' = y, y(0) = 1.
- \blacksquare e is exp(1).
- tanh is the solution of $y' = 1 y^2$, y(0) = 1.
- sin is the first projection of $y' = (y'_1, y'_2) = (y_2, -y_1)$, y(0) = (0, 1).
- cos its second projection.
- \blacksquare sinh is the first projection of $y'=(y_2,y_1),\ y(0)=(0,1).$
- cosh its second projection.
- \blacksquare $\frac{1}{1+t}$ is the solution of $y'=-y^2$, y(0)=1
- $\frac{1}{1+t^2}$ is the first projection of $y' = (-y_2y_1^2 y_2y_3y_1^2, 1 + y_3, 0), <math>y(0,0,0) = (1,0,1).$

- \blacksquare exp is the solution of y' = y, y(0) = 1.
- \blacksquare e is exp(1).
- tanh is the solution of $y' = 1 y^2$, y(0) = 1.
- sin is the first projection of $y' = (y'_1, y'_2) = (y_2, -y_1)$, y(0) = (0, 1).
- cos its second projection.
- \blacksquare sinh is the first projection of $y'=(y_2,y_1),\ y(0)=(0,1).$
- cosh its second projection.
- \blacksquare $\frac{1}{1+t}$ is the solution of $y'=-y^2$, y(0)=1
- $\frac{1}{1+t^2}$ is the first projection of $y' = (-y_2y_1^2 y_2y_3y_1^2, 1 + y_3, 0), <math>y(0,0,0) = (1,0,1).$
- arctan is the first projection of $y' = (y_2, -y_3y_2^2 y_3y_4y_2^2, 1 + y_4, 0), y(0) = (0, 1, 0, 1)$

- \blacksquare exp is the solution of y' = y, y(0) = 1.
- \bullet is exp(1).
- tanh is the solution of $y' = 1 y^2$, y(0) = 1.
- sin is the first projection of $y' = (y'_1, y'_2) = (y_2, -y_1)$, y(0) = (0, 1).
- cos its second projection.
- \blacksquare sinh is the first projection of $y'=(y_2,y_1),\ y(0)=(0,1).$
- cosh its second projection.
- \blacksquare $\frac{1}{1+t}$ is the solution of $y'=-y^2$, y(0)=1
- $\frac{1}{1+t^2}$ is the first projection of $y' = (-y_2y_1^2 y_2y_3y_1^2, 1 + y_3, 0), <math>y(0,0,0) = (1,0,1).$
- arctan is the first projection of $y' = (y_2, -y_3y_2^2 y_3y_4y_2^2, 1 + y_4, 0), y(0) = (0, 1, 0, 1)$
- 4 arctan is the first projection of $y' = (y_2 + y_5y_2 + y_6y_2 + y_7y_2, -y_3y_2^2 y_3y_4y_2^2, 1 + y_4, 0, 0, 0, 0),$ y(0) = (0, 1, 0, 1, 1, 1, 1).

- \blacksquare exp is the solution of y' = y, y(0) = 1.
- \bullet is exp(1).
- \blacksquare tanh is the solution of $y' = 1 y^2$, y(0) = 1.
- sin is the first projection of $y' = (y'_1, y'_2) = (y_2, -y_1)$, y(0) = (0, 1).
- cos its second projection.
- \blacksquare sinh is the first projection of $y'=(y_2,y_1),\ y(0)=(0,1).$
- cosh its second projection.
- \blacksquare $\frac{1}{1+t}$ is the solution of $y'=-y^2$, y(0)=1
- $\frac{1}{1+t^2}$ is the first projection of $y' = (-y_2y_1^2 y_2y_3y_1^2, 1 + y_3, 0), <math>y(0,0,0) = (1,0,1).$
- arctan is the first projection of $y' = (y_2, -y_3y_2^2 y_3y_4y_2^2, 1 + y_4, 0), y(0) = (0, 1, 0, 1)$
- 4 arctan is the first projection of $y' = (y_2 + y_5y_2 + y_6y_2 + y_7y_2, -y_3y_2^2 y_3y_4y_2^2, 1 + y_4, 0, 0, 0, 0),$ y(0) = (0, 1, 0, 1, 1, 1, 1).
- \blacksquare π is 4 arctan(1).

- 2 is $+_1(1)$, with $+_1$ solution of y' = 1, y(0) = 1.
- 3 is $+_2(1)$, with $+_2$ first projection of solution of $y' = (y_2 + y_3, 0, 0)$, y(0) = (1, 1, 1).
- k is $+_{k-1}(1)$, with $+_{k-1}$ first projection of solution of $y' = (y_2 + \dots + y_k, 0, \dots, 0), y(0) = (1, 1, \dots, 1).$
- -k is -k-1(-1), with -k-1 first projection of solution of $y' = (-y_2 \cdots y_k, 0, \dots, 0), y(0) = (1, 1, \dots, 1).$

a

- **2** is $+_1(1)$, with $+_1$ solution of y' = 1, y(0) = 1.
- 3 is $+_2(1)$, with $+_2$ first projection of solution of $y' = (y_2 + y_3, 0, 0)$, y(0) = (1, 1, 1).
- k is $+_{k-1}(1)$, with $+_{k-1}$ first projection of solution of $y' = (y_2 + \dots + y_k, 0, \dots, 0), y(0) = (1, 1, \dots, 1).$
- -k is -k-1(-1), with -k-1 first projection of solution of $y' = (-y_2 \cdots y_k, 0, \dots, 0), y(0) = (1, 1, \dots, 1).$
- -0+z is the solution of +'(0,t)=1, +(0,0)=0.
- y + z is the solution of +'(t, z) = 1, +(0, z) = z.
- 0 * z is the solution of *'(0, t) = 0, *(0, 0) = 0.
- $\mathbf{y} * \mathbf{z}$ is the solution of *'(t,z) = z, +(0,z) = 0.

- \blacksquare $\frac{1}{x+1}$ is the solution of $y'=-y^2$, y(0)=1
- $\blacksquare \frac{1}{2} \text{ is } \frac{1}{1+1}$
- ln(x+1) is the solution of $y' = (y_1, -y_2^2)$, y(0) = (0,1).
- ln(2) is ln(1+1).

.

- \blacksquare $\frac{1}{x+1}$ is the solution of $y'=-y^2$, y(0)=1
- $\blacksquare \frac{1}{2} \text{ is } \frac{1}{1+1}$
- ln(x+1) is the solution of $y' = (y_1, -y_2^2)$, y(0) = (0,1).
- ln(2) is ln(1+1).
- However the current game is **not** so **interesting**:
 - ▶ $\frac{1}{x}$ and ln(x) are not in that class.
 - $\frac{1}{y}$ is the solution of $y' = -y^2$, y(1) = 1,
 - $\ln(x+1)$ is the solution of $y' = (y_1, -y_2^2)$, y(1) = (0,1).
 - $ightharpoonup \frac{1}{\sqrt{+2}}$ is not in that class:
 - $\frac{1}{y+2}$ is the solution of $y'=-y^2$, y(0)=1/2.

- \blacksquare $\frac{1}{y+1}$ is the solution of $y'=-y^2$, y(0)=1
- $\blacksquare \frac{1}{2} \text{ is } \frac{1}{1+1}$
- ln(x+1) is the solution of $y'=(y_1,-y_2^2), \ y(0)=(0,1).$
- ln(2) is ln(1+1).
- However the current game is **not** so **interesting**:
 - $ightharpoonup rac{1}{x}$ and ln(x) are not in that class.
 - $\frac{1}{y}$ is the solution of $y' = -y^2$, y(1) = 1,
 - $\ln(x+1)$ is the solution of $y'=(y_1,-y_2^2), y(1)=(0,1).$
 - ▶ $\frac{1}{y+2}$ is not in that class:
 - $\frac{1}{y+2}$ is the solution of $y'=-y^2$, y(0)=1/2.
- Let's have more fun and authorize
 - ▶ $y(x_0) = y_0$ instead of $y(0) = y_0$, with y_0 pODE computable constant.
 - n-variables functions.

A better game: *n*-variables functions, not so restricted initial condition

We start from

- 0, 1, -1
- and we consider (projections of) solutions of ordinary differential equations of type

$$\begin{cases} y(x_0) &= y_0 \\ Jacobian_y(x) &= p(y(x)) \end{cases}$$

where p is a (vector of) polynomials, y_0 is in the class.

Terminology:

- Such a function $f(x) = y_{1...m}(y)$ will be said to be generated.
- \blacksquare f(1) will then be called a (pODE) computable real.

How to transform initial-value problem

$$\begin{cases} y'_1 = \sin^2 y_2 \\ y'_2 = y_1 \cos y_2 - e^{e^{y_1} + t} \end{cases} \begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

q

How to transform initial-value problem

$$\begin{cases} y_1' = \sin^2 y_2 \\ y_2' = y_1 \cos y_2 - e^{e^{y_1} + t} \end{cases} \begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

into a polynomial initial value problem

How to transform initial-value problem

$$\begin{cases} y_1' = \sin^2 y_2 \\ y_2' = y_1 \cos y_2 - e^{e^{y_1} + t} \end{cases} \begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

into a polynomial initial value problem

$$\begin{cases}
y_1' = y_3^2 \\
\end{cases} \qquad \qquad \begin{cases}
y_1(0) = 0 \\
\end{cases}$$

considering $y_3 = \sin y_2$,

How to transform initial-value problem

$$\begin{cases} y_1' = \sin^2 y_2 \\ y_2' = y_1 \cos y_2 - e^{e^{y_1} + t} \end{cases} \begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

into a polynomial initial value problem

$$\begin{cases} y_1' = y_3^2 \\ y_2' = y_1 y_4 - y_5 \end{cases} \qquad \begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

considering $y_3 = \sin y_2$, $y_4 = \cos y_2$, $y_5 = e^{e^{y_1} + t}$

How to transform initial-value problem

$$\begin{cases} y'_1 = \sin^2 y_2 \\ y'_2 = y_1 \cos y_2 - e^{e^{y_1} + t} \end{cases} \begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

into a polynomial initial value problem

$$\begin{cases} y_1' &= y_3^2 \\ y_2' &= y_1 y_4 - y_5 \\ y_3' &= y_4 (y_1 y_4 - y_5) \end{cases} \begin{cases} y_1(0) &= 0 \\ y_2(0) &= 0 \\ y_3(0) &= 0 \end{cases}$$

considering $y_3 = \sin y_2$, $y_4 = \cos y_2$, $y_5 = e^{e^{y_1} + t}$

How to transform initial-value problem

$$\begin{cases} y_1' = \sin^2 y_2 \\ y_2' = y_1 \cos y_2 - e^{e^{y_1} + t} \end{cases} \begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

into a polynomial initial value problem

$$\begin{cases} y_1' &= y_3^2 \\ y_2' &= y_1 y_4 - y_5 \\ y_3' &= y_4 (y_1 y_4 - y_5) \\ y_4' &= -y_3 (y_1 y_4 - y_5) \end{cases} \qquad \begin{cases} y_1(0) &= 0 \\ y_2(0) &= 0 \\ y_3(0) &= 0 \\ y_4(0) &= 1 \end{cases}$$

considering $y_3 = \sin y_2$, $y_4 = \cos y_2$, $y_5 = e^{e^{y_1} + t}$

How to transform initial-value problem

$$\begin{cases} y_1' = \sin^2 y_2 \\ y_2' = y_1 \cos y_2 - e^{e^{y_1} + t} \end{cases} \begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

into a polynomial initial value problem

$$\begin{cases} y_1' &= y_3^2 \\ y_2' &= y_1 y_4 - y_5 \\ y_3' &= y_4 (y_1 y_4 - y_5) \\ y_4' &= -y_3 (y_1 y_4 - y_5) \\ y_5' &= y_5 (y_6 y_3^2 + 1) \end{cases} \begin{cases} y_1(0) &= 0 \\ y_2(0) &= 0 \\ y_3(0) &= 0 \\ y_4(0) &= 1 \\ y_5(0) &= e \end{cases}$$

considering $y_3 = \sin y_2$, $y_4 = \cos y_2$, $y_5 = e^{e^{y_1} + t}$, $y_6 = e^{y_1}$

How to transform initial-value problem

$$\begin{cases} y_1' = \sin^2 y_2 \\ y_2' = y_1 \cos y_2 - e^{e^{y_1} + t} \end{cases} \begin{cases} y_1(0) = 0 \\ y_2(0) = 0 \end{cases}$$

into a polynomial initial value problem

$$\begin{cases} y_1' &= y_3^2 \\ y_2' &= y_1 y_4 - y_5 \\ y_3' &= y_4 (y_1 y_4 - y_5) \\ y_4' &= -y_3 (y_1 y_4 - y_5) \\ y_5' &= y_5 (y_6 y_3^2 + 1) \\ y_6' &= y_6 y_3^2 \end{cases} \begin{cases} y_1(0) &= 0 \\ y_2(0) &= 0 \\ y_3(0) &= 0 \\ y_4(0) &= 1 \\ y_5(0) &= e \\ y_6(0) &= 1 \end{cases}$$

considering $y_3 = \sin y_2$, $y_4 = \cos y_2$, $y_5 = e^{e^{y_1} + t}$, $y_6 = e^{y_1}$

Facts and Properties

- The class of generated functions include all previously mentioned functions, and most of the (analytic) common functions.
- It is stable by many operations:
 - ▶ if f and g can be generated, then f+g, f-g, fg, $\frac{1}{f}$, $f \circ g$ can be generated.
- It is stable by ODE solving:
 - if f can be generated, and y satisfies y' = f(y) then y can be generated.
- A generated function must be analytic⁴.

■ The set of pODE computable constants is a field.

⁴Equals to its Taylor expansion in all point.

Facts and Properties

- The class of generated functions include all previously mentioned functions, and most of the (analytic) common functions.
- It is stable by many operations:
 - ▶ if f and g can be generated, then f + g, f g, fg, $\frac{1}{f}$, $f \circ g$ can be generated.
- It is stable by ODE solving:
 - ▶ if f can be generated, and y satisfies y' = f(y) then y can be generated.
- A generated function must be analytic⁴.
 - ► Famous analytic non-generable functions: [Shannon 41]
 - Euler's Gamma function $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ [Hölder 1887]
 - Riemann's Zeta function $\zeta(x) = \sum_{k=0}^{\infty} \frac{1}{k^x}$ [Hilbert].
- The set of pODE computable constants is a field.

⁴Equals to its Taylor expansion in all point.

Menu

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Descriptive Algorithmic Science

In Case of Turing Nostalgy

Conclusions

- A generated function must be analytic.
- A basic non-generable function:

- A generated function must be analytic.
- A basic non-generable function:

■ However |x| is "

close" to a generable function:

first projection of $y' = ((1 - y_2^2)y_3 + y_2, 1 - y_2^2, 1),$ y(0) = (0, 0, 0).

- A generated function must be analytic.
- A basic non-generable function:

■ However |x| is "

close" to a generable function:

first projection of $y' = (y_4(1 - y_2^2)y_3 + y_2, y_4(1 - y_2^2), 1, 0),$ y(0) = (0, 0, 0, 2).

- A generated function must be analytic.
- A basic non-generable function:

■ However |x| is "

close" to a generable function:

first projection of $y' = (y_4(1-y_2^2)y_3 + y_2, y_4(1-y_2^2), 1, 0), y(0) = (0, 0, 0, 100).$

- A generated function must be analytic.
- A basic non-generable function:

■ However |x| is " uniformly close" to a generable function:

first projection of $y' = (y_4(1-y_2^2)y_3 + y_2, y_4(1-y_2^2), 1, 0), y(0) = (0, 0, 0, K).$

- A generated function must be analytic.
- A basic non-generable function:

- However |x| is " $e^{-\mu}$ uniformly close" to a generable function:
 - ▶ Formally: for all $\mu > 0$, x,

$$|x| - e^{-\mu} \le v(x) \le |x| + e^{-\mu}$$

first projection of $y' = (y_4(1 - y_2^2)y_3 + y_2, y_4(1 - y_2^2), 0, 0),$ $y(0) = (0, 0, 0, e^{\mu}).$

Alternative statement

- \blacksquare |x| is "uniformly close" to a generable function:
 - Can we avoid such a "strange"/"unatural" dependance in the initial condition?
 - ► Yes, if we don't ask for real time computation!

Alternative statement

- \blacksquare |x| is "uniformly close" to a generable function:
 - Can we avoid such a "strange"/"unatural" dependance in the initial condition?
 - ▶ Yes, if we don't ask for real time computation!

Replace real-time concept:

■ f(t) must be produced at time twith precision $e^{-\mu}$

By a more modern concept:

■ f(t) must be produced at time T with precision $e^{-\mu}$

This is a more general notion of computability

- A generated function can always be computed in that sense.
- Ilustration for |x|
 - ▶ Simple idea: consider a path y(t) going from $y(0) = (x, \mu, \dots)$ to $y(T) = (x, \mu, abs(x, \mu), \dots)$ where $abs(x, \mu) = \tanh(e^{-\mu}x)x$ is previous function.

Graphically:

with
$$|x| - e^{-\mu} \le y_3(T) \le |x| + e^{-\mu}$$
, $x = y_1(0), \mu = y_2(0)$

This is a more general notion of computability

- A generated function can always be computed in that sense.
- Ilustration for |x|
 - ▶ Simple idea: consider a path y(t) going from $y(0) = (x, \mu, \dots)$ to $y(T) = (x, \mu, abs(x, \mu), \dots)$ where $abs(x, \mu) = \tanh(e^{-\mu}x)x$ is previous function.
 - For example, for T=1,

$$\begin{split} y(t) &= (x, \mu, \textit{abs}(tx, t\mu), t) \\ \text{solution of } y'(t) &= (0, 0, p_y(y(t)), 1), \qquad y(0) = (x, \mu, 1, 1), \\ \text{with} \\ p_y(y(t)) &= (1 - \tanh^2(e^{t\mu}tx))(\mu e^{t\mu}tx + e^{t\mu}x) + x \tanh(e^{t\mu}tx) \end{split}$$

► Graphically:

with
$$|x| - e^{-\mu} \le y_3(T) \le |x| + e^{-\mu}$$
, $x = y_1(0), \mu = y_2(0)$

This is a more general notion of computability

- A generated function can always be computed in that sense.
- Ilustration for |x|
 - ▶ Simple idea: consider a path y(t) going from $y(0) = (x, \mu, \dots)$ to $y(T) = (x, \mu, abs(x, \mu), \dots)$ where $abs(x, \mu) = \tanh(e^{-\mu}x)x$ is previous function.
 - For example, for T=1, $y(t)=(x,\mu,abs(tx,t\mu),t)$ solution of $y'(t)=(0,0,p_y(y(t)),1), \quad y(0)=(x,\mu,1,1),$ with $p_y(y(t))=(1-\tanh^2(e^{y_4y_2}y_4y_1))(y_2e^{y_4y_2}y_4y_1+e^{y_4y_2}y_1)+y_1\tanh(e^{y_4y_2}y_4y_2)$
 - ► Graphically:

with
$$|x| - e^{-\mu} \le y_3(T) \le |x| + e^{-\mu}$$
, $x = y_1(0), \mu \neq y_2(0)$

- If you want only polynomial ODEs:
 - ▶ Do as in previous exercice for the system for |x|:

$$\begin{cases} y_1' &=& 0 \\ y_2' &=& 0 \\ y_3' &=& (1-\tanh^2(e^{y_4y_2}y_4y_1))(y_2e^{y_4y_2}y_4y_1+e^{y_4y_2}y_1)+y_1\tanh(e^{y_4y_2}y_4y_2) \\ y_4' &=& 1 \end{cases}$$

$$\begin{cases} y_1(0) &=& x \\ y_2(0) &=& \mu \\ y_3(0) &=& 1 \\ y_4(0) &=& 1 \end{cases}$$

■ Other paths could be used. E.g. if one wants better and better precision, or that this works even for $t \ge 1$.

$$y(t) = (x, \mu, abs(\min(tx, 1), t\mu), t)$$

- If you want only polynomial ODEs:
 - ▶ Do as in previous exercice for the system for |x|:

$$\begin{cases} y_1' &= 0 \\ y_2' &= 0 \\ y_3' &= (1 - \tanh^2(e^{y_4 y_2} y_4 y_1))(y_2 e^{y_4 y_2} y_4 y_1 + e^{y_4 y_2} y_1) + y_1 \tanh(e^{y_4 y_2} y_4 y_2) \\ y_4' &= 1 \end{cases}$$

$$\begin{cases} y_1(0) &= x \\ y_2(0) &= \mu \\ y_3(0) &= 1 \end{cases}$$

Other paths could be used.

E.g. if one wants better and better precision, or that this works even for $t \ge 1$.

$$y(t) = (x, \mu, abs(\frac{1 + tx - abs(tx - 1, t\mu)}{2}, t\mu), t)$$
using min(a, b) = (a + b - |a - b|)/2.

 \blacksquare |x| can be computed in that sense.

⁵(OB, D. Graça, A. Pouly 2016's) Improvment of Journal of Complexity, 2007, OB, M. Campagnolo, D. Graça, E. Hainry

- \blacksquare |x| can be computed in that sense.
- \blacksquare Γ , ζ can be computed in that sense.

⁵(OB, D. Graça, A. Pouly 2016's) Improvment of Journal of Complexity, 2007, OB, M. Campagnolo, D. Graça, E. Hainry

- \blacksquare |x| can be computed in that sense.
- \blacksquare Γ , ζ can be computed in that sense.
- Theorem [OB, M. Campagnolo, D. Graça, E. Hainry⁵] Any computable function can be computed in that sense, and conversely.

⁵(OB, D. Graça, A. Pouly 2016's) Improvment of Journal of Complexity, 2007, OB, M. Campagnolo, D. Graça, E. Hainry

- \blacksquare |x| can be computed in that sense.
- \blacksquare Γ , ζ can be computed in that sense.
- Theorem [OB, M. Campagnolo, D. Graça, E. Hainry⁵] Any computable function can be computed in that sense, and conversely.
- The notion of computable function can be defined using pODE only !!

16

⁵(OB, D. Graça, A. Pouly 2016's) Improvment of Journal of Complexity, 2007, OB, M. Campagnolo, D. Graça, E. Hainry

- \blacksquare |x| can be computed in that sense.
- \blacksquare Γ , ζ can be computed in that sense.
- **Theorem** [OB, M. Campagnolo, D. Graça, E. Hainry⁵] Any computable function can be computed in that sense, and conversely.
- The notion of computable function can be defined using pODE only !!
 - ► No need to talk of Turing machines, or equivalent concept to define computable functions.

16

⁵(OB, D. Graça, A. Pouly 2016's) Improvment of Journal of Complexity, 2007, OB, M. Campagnolo, D. Graça, E. Hainry

Formal Theorem⁶

Let $a, b \in \mathbb{Q}$.

■ $f \in C^0([a, b], \mathbb{R})$ is computable iff

▶ y satisfies a pODE

▶ $y_{1..m}$ is $e^{-\mu}$ -close to f(x) after time T=1

⁶(OB, D. Graça, A. Pouly 2016's) Improvment of Journal of Complexity, 2007, OB, M. Campagnolo, D. Graça, E. Hainry

Formal Theorem⁶

Let $a, b \in \mathbb{Q}$.

■ $f \in C^0([a, b], \mathbb{R})$ is computable

 \exists polynomials p, q s.t. $\forall x \in \text{dom } f$, there exists a (unique) y satisfying for all $t \in \mathbb{R}_+$:

•
$$y(0) = q(x, \mu)$$
 and $y'(t) = p(y(t))$ with $||y'(t)||_{\infty} \ge 1$

$$y(0) = q(x, \mu)$$
 and $y'(t) = p(y(t))$ with $||y'(t)||_{\infty} \geqslant 1$
 \triangleright y satisfies a pODE

• if
$$t \ge T = 1$$
 then $||y_{1..m}(t) - f(x)||_{\infty} \le e^{-\mu}$

▶
$$y_{1..m}$$
 is $e^{-\mu}$ -close to $f(x)$ after time $T=1$

Picture:

⁶(OB, D. Graça, A. Pouly 2016's) Improvment of Journal of Complexity, 2007, OB, M. Campagnolo, D. Graça, E. Hainry

Menu

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Descriptive Algorithmic Science

In Case of Turing Nostalgy

Conclusions

Time complexity for continuous systems

■ Variable t is rather arbitary.

$$y(0) = g(x) \qquad y' = h(y)$$

$$\downarrow_{g(x)} \qquad \downarrow_{f(x)} \qquad \downarrow_{f($$

Time complexity for continuous systems

■ Variable t is rather arbitary.

Time complexity for continuous systems

 \blacksquare Variable t is rather arbitary.

19

A Simple & Key Idea: curvi-linear abscissa

Length based: T

$$\ell(t) = \text{length of } y \text{ over } [0, t]$$

$$= \int_0^t \|p(y(u))\|_{\infty} du$$

Consider parameterization

$$t = \text{length of } y \text{ over } [0, t]$$

I.e.:

Follow curve at constant speed.

Main Statement: Complexity

■ **Theorem**⁷ Any polynomial time computable function can be computed in polynomial length, and conversely.

⁷ICALP 2016 Track B Best Paper Award, OB, D. Graça, A. Pouly

Main Statement: Complexity

- Theorem⁷ Any polynomial time computable function can be computed in polynomial length, and conversely.
- The notion of polynomial time computable function can be defined using pODE only !!

⁷ICALP 2016 Track B Best Paper Award, OB, D. Graça, A. Pouly

Main Statement: Complexity

- Theorem⁷ Any polynomial time computable function can be computed in polynomial length, and conversely.
- The notion of polynomial time computable function can be defined using pODE only !!
 - ► No need to talk of Turing machines, or equivalent concept to define polynomial time computable functions.

⁷ICALP 2016 Track B Best Paper Award, OB, D. Graça, A. Pouly

Formal Theorem 8

Let $a, b \in \mathbb{Q}$.

■ $f \in C^0([a,b],\mathbb{R})$ is polynomial-time computable iff

▶ y satisfies a pODE

▶ $y_{1..m}$ is $e^{-\mu}$ -close to f(x) after a polynomial length

⁸ICALP 2016 Track B Best Paper Award, OB, D. Graça, A. Pouly

Formal Theorem 8

Let $a, b \in \mathbb{Q}$.

■ $f \in C^0([a, b], \mathbb{R})$ is polynomial-time computable iff

 \exists polynomials p, q, Ω s.t. $\forall x \in \text{dom } f$, there exists a (unique) y satisfying for all $t \in \mathbb{R}_+$:

•
$$y(0) = q(x, \mu)$$
 and $y'(t) = p(y(t))$ with $||y'(t)||_{\infty} \ge 1$

▶ y satisfies a pODE

▶ if
$$\operatorname{len}_{y}(0, t) \geqslant \Omega(\|x\|_{\infty}, \mu)$$
 then $\|y_{1...m}(t) - f(x)\|_{\infty} \leqslant e^{-\mu}$

▶ $y_{1..m}$ is $e^{-\mu}$ -close to f(x) after a polynomial length

⁸ICALP 2016 Track B Best Paper Award, OB, D. Graça, A. Pouly

For Discrete People 9

Fix a "reasonable" way to encode words w, length of input, and decision:

■ For example $\psi(w) = \left(\sum_{i=1}^{|w|} w_i k^{-i}, |w|\right)$, and $\geqslant 1, \leqslant -1$.

Then:

 $m{\mathcal{L}} \subseteq \{0,1\}^*$ is polynomial-time computable iff

▶ y satisfies a pODE

lacktriangle decision is made after a polynomial length

 \blacktriangleright and corresponds to $\mathcal L$

For Discrete People 9

Fix a "reasonable" way to encode words w, length of input, and decision:

■ For example $\psi(w) = \left(\sum_{i=1}^{|w|} w_i k^{-i}, |w|\right)$, and $\geqslant 1, \leqslant -1$.

Then:

- $m{\mathcal{L}} \subseteq \{0,1\}^*$ is polynomial-time computable iff
- \exists polynomials p, q, Ω s.t. $\forall w$, there exists a (unique) y satisfying for all $t \in \mathbb{R}_+$:
 - $y(0) = q(\psi(w))$ and y'(t) = p(y(t)) with $||y'(t)||_{\infty} \geqslant 1$
 - ▶ y satisfies a pODE

- if $\operatorname{len}_y(0,t)\geqslant \Omega(|w|)$ then $|y_1(t)|\geqslant 1$
 - ▶ decision is made after a polynomial length
- $w \in \mathcal{L}$ iff $y_1(t) \geqslant 1$

lacktriangle and corresponds to ${\cal L}$

Menu

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Descriptive Algorithmic Science

In Case of Turing Nostalgy

Conclusions

- Finding zeros of a function: x' = -f(x)
- Linear Programming:

See e.g.: The Nature of Computation, C. Moore and S. Mertens, Oxford University Press.

Computing optimal solutions:

 Neural Networks, Deep learning, Differential Neural Computers, Neural Turing Machines, and variants...

- Finding zeros of a function: x' = -f(x)
- Linear Programming:

See e.g.: The Nature of Computation, C. Moore and S. Mertens, Oxford University Press.

Computing optimal solutions:

 Neural Networks, Deep learning, Differential Neural Computers, Neural Turing Machines, and variants...

■ And Turing machines.

Menu

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Descriptive Algorithmic Science

In Case of Turing Nostalgy

Conclusions

For Nostalgic of Turing Machines: Some ideas of the proof

- Polynomial time ODE can be solved in a time polynomial in their length¹⁰.
- Need to simulate a Turing machine using polynomial ODEs.
 - ► Ingredient 1: simulating a Turing machine using iterations of piecewise linear function
 - ► Ingredient 2: iterating a function using polynomial ODEs
 - ► Ingredient 3: everything must be dealt with analytic functions, i.e. by keeping errors under control.

¹⁰TCS 2016 A. Pouly, D. Graça

Turing Machines

- Let M be some one tape Turing machine, with *m* states and 10 symbols.
- If

...
$$B B B a_{-k} a_{-k+1}$$
... $a_{-1} a_0 a_1$... $a_n B B B$...

is the tape content of M, it can be seen as

$$y_1 = a_0 a_1 ... a_n y_2 = a_{-1} a_{-2} ... a_{-k}$$
 (1)

■ The configuration of M is then given by three values: its internal state s, y_1 and y_2 .

Alternative View of a Turing Machine

$$\begin{array}{rcl} y_1 & = & a_0 10^{-1} + a_1 10^{-2} + ... + a_n 10^{-n-1} \\ y_2 & = & a_{-1} 10^{-1} + a_{-2} 10^{-2} + ... + a_{-k} 10^{-k}. \end{array} \tag{2}$$

$$y(t+1)=f(y(t))$$

Turing Machine	PAM
State Space	State Space
$\{q_1,q_2,\cdots,q_m\} imes \Sigma^*$	$[1,m+1]\times[0,1]$
State $(q_i, a_{-m}a_{-1}, a_0a_n)$	State $x = s + y_2$, $y = y_1$
if 2 is read, q_1 : then write 4; goto q_2 if 3 is read, q_5 : then move right; goto q_1	$\begin{cases} x := x+1 \\ y := y+\frac{2}{10} \end{cases} \text{ if } \begin{cases} 1 \le x < 2 \\ \frac{2}{10} \le y < \frac{3}{10} \end{cases}$ $\begin{cases} x := \frac{x-5}{10} + \frac{3}{10} + 1 \\ y := 10 * y - 3 \end{cases} \text{ if } \begin{cases} 5 \le x < 6 \\ \frac{3}{10} \le y < \frac{4}{10} \end{cases}$
if 5 is read, q_3 : then move left; goto q_7	$\begin{cases} x := 10(x-3) - j + 7 \\ y := \frac{y}{10} + \frac{j}{10} \\ \text{if } \begin{cases} 3 + \frac{j}{10} \le x < 3 + \frac{j+1}{10} \\ \frac{5}{10} \le y < \frac{6}{10} \end{cases} \\ \text{for } j \in \{0, 1, \dots, 9\}. \end{cases}$

Key remark: f is piecewise affine

Morality

- If you prefer, a Turing Machine can be seen as a **piecewise** affine function
 - $x_i(t+1) = \sigma\left(\sum_{j=1}^N a_{i,j}x_j(t) + c_i\right)$ is even (basically) sufficient.

► Analytic version:

■ It remains to simulate

$$y(t+1) := y(t)$$

for t = 1, 2, ...

■ Remaining analytic...

Example: y(t + 1) := 2 * y(t)

Simulation of iterations of $h(n) = 2^n$ by ODEs.

Ingredient 2: Branicky's clock (1995): with non-analytic functions

- We want to alternate $z_2 := \omega(z_1)$, $z_1 := z_2$.
- Key observation: the solution of

$$y' = c(g - y)^3 \phi(t)$$

converges at t=1/2 the goal g with some arbitray precision, independently from initial condition at t=0

for any function ϕ of positive integral if \boldsymbol{c} is sufficiently big.

- ▶ If you prefer, this roughly does y(1/2) := g.
- The following system is a solution

$$\begin{cases} z'_1 = c_1(z_2 - z_1)^3 \theta(-\sin(2\pi t)) & \begin{cases} z_1(0) = x_0 \\ z'_2 = c_2(\omega(z_1) - z_2)^3 \theta(\sin(2\pi t)) \end{cases} & \begin{cases} z_1(0) = x_0 \\ z_2(0) = x_0 \end{cases}$$

considering functions:

•
$$\theta$$
 such that $\theta(x) = 0$ if $x \le 0$, $\theta(x) = x^2$ if $x \ge 0$.

Menu

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Descriptive Algorithmic Science

In Case of Turing Nostalgy

Conclusions

Conclusion/Take Home Message

- Programming with ODEs is **simple** and **fun**.
- Many concepts from mathematics can be defined using polynomial ODEs
- Many concepts from computer science can be defined using polynomial ODEs
 - ► Computable functions.
 - ► Polynomial Time Computable Functions

Conclusion/Take Home Message

- Programming with ODEs is **simple** and **fun**.
- Many concepts from mathematics can be defined using polynomial ODEs
- Many concepts from **computer science** can be defined using polynomial ODEs
 - ► Computable functions.
 - ► Polynomial Time Computable Functions
 - ► NP, PSPACE, ...?