
Computing with Ordinary Differential Equations

Olivier Bournez Daniel Graça1 Amaury Pouly2

Ecole Polytechnique
Laboratoire d’Informatique de l’X

Palaiseau, France

GDR-IM
March 2017

1Université d’Algarve, Portugal
2Postdoc, MPI, Allemagne

1

2

Today’s game
We start from

0, 1, −1

and we consider projections of solutions of ordinary differential
equations of type {

y(0) = y0

y ′(t) = p(y(t))

where p is a (vector of) polynomials3

t

f (t)=y1(t)
f (1)

1

Terminology:

Such a function f (t) = y1(t) will be said to be generated.

f (1) will then be called a (pODE) computable real.

3With y0, and coefficients among 0, 1,−1.
3

Today’s game
We start from

0, 1, −1

and we consider projections of solutions of ordinary differential
equations of type {

y(0) = y0

y ′(t) = p(y(t))

where p is a (vector of) polynomials3

t

f (t)=y1(t)
f (1)

1

Terminology:

Such a function f (t) = y1(t) will be said to be generated.

f (1) will then be called a (pODE) computable real.

3With y0, and coefficients among 0, 1,−1.
3

Today’s game
We start from

0, 1, −1

and we consider projections of solutions of ordinary differential
equations of type {

y(0) = y0

y ′(t) = p(y(t))

where p is a (vector of) polynomials3

t

f (t)=y1(t)
f (1)

1

Terminology:

Such a function f (t) = y1(t) will be said to be generated.

f (1) will then be called a (pODE) computable real.

3With y0, and coefficients among 0, 1,−1.
3

Today’s game
We start from

0, 1, −1

and we consider projections of solutions of ordinary differential
equations of type {

y(0) = y0

y ′(t) = p(y(t))

where p is a (vector of) polynomials3

t

f (t)=y1(t)
f (1)

1

Terminology:

Such a function f (t) = y1(t) will be said to be generated.

f (1) will then be called a (pODE) computable real.
3With y0, and coefficients among 0, 1,−1.

3

Today’s game
We start from

0, 1, −1

and we consider projections of solutions of ordinary differential
equations of type {

y(0) = y0

y ′(t) = p(y(t))

where p is a (vector of) polynomials3

t

f (t)=y1(t)
f (1)

1

Terminology:

Such a function f (t) = y1(t) will be said to be generated.

f (1) will then be called a (pODE) computable real.
3With y0, and coefficients among 0, 1,−1.

3

Menu

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Descriptive Algorithmic Science

In Case of Turing Nostalgy

Conclusions

4

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.

e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 − y2y3y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of
y ′ = (y2,−y3y

2
2 − y3y4y

2
2 , 1 + y4, 0), y(0) = (0, 1, 0, 1)

4 arctan is the first projection of
y ′ = (y2 +y5y2 +y6y2 +y7y2,−y3y

2
2 −y3y4y

2
2 , 1+y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

5

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).

tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 − y2y3y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of
y ′ = (y2,−y3y

2
2 − y3y4y

2
2 , 1 + y4, 0), y(0) = (0, 1, 0, 1)

4 arctan is the first projection of
y ′ = (y2 +y5y2 +y6y2 +y7y2,−y3y

2
2 −y3y4y

2
2 , 1+y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

5

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.

sin is the first projection of y ′ = (y ′1, y
′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 − y2y3y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of
y ′ = (y2,−y3y

2
2 − y3y4y

2
2 , 1 + y4, 0), y(0) = (0, 1, 0, 1)

4 arctan is the first projection of
y ′ = (y2 +y5y2 +y6y2 +y7y2,−y3y

2
2 −y3y4y

2
2 , 1+y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

5

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).

cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 − y2y3y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of
y ′ = (y2,−y3y

2
2 − y3y4y

2
2 , 1 + y4, 0), y(0) = (0, 1, 0, 1)

4 arctan is the first projection of
y ′ = (y2 +y5y2 +y6y2 +y7y2,−y3y

2
2 −y3y4y

2
2 , 1+y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

5

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.

sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 − y2y3y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of
y ′ = (y2,−y3y

2
2 − y3y4y

2
2 , 1 + y4, 0), y(0) = (0, 1, 0, 1)

4 arctan is the first projection of
y ′ = (y2 +y5y2 +y6y2 +y7y2,−y3y

2
2 −y3y4y

2
2 , 1+y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

5

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).

cosh its second projection.
1

1+t is the solution of y ′ = −y2, y(0) = 1
1

1+t2 is the first projection of y ′ = (−y2y
2
1 − y2y3y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of
y ′ = (y2,−y3y

2
2 − y3y4y

2
2 , 1 + y4, 0), y(0) = (0, 1, 0, 1)

4 arctan is the first projection of
y ′ = (y2 +y5y2 +y6y2 +y7y2,−y3y

2
2 −y3y4y

2
2 , 1+y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

5

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 − y2y3y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of
y ′ = (y2,−y3y

2
2 − y3y4y

2
2 , 1 + y4, 0), y(0) = (0, 1, 0, 1)

4 arctan is the first projection of
y ′ = (y2 +y5y2 +y6y2 +y7y2,−y3y

2
2 −y3y4y

2
2 , 1+y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

5

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 − y2y3y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of
y ′ = (y2,−y3y

2
2 − y3y4y

2
2 , 1 + y4, 0), y(0) = (0, 1, 0, 1)

4 arctan is the first projection of
y ′ = (y2 +y5y2 +y6y2 +y7y2,−y3y

2
2 −y3y4y

2
2 , 1+y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

5

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 − y2y3y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).

arctan is the first projection of
y ′ = (y2,−y3y

2
2 − y3y4y

2
2 , 1 + y4, 0), y(0) = (0, 1, 0, 1)

4 arctan is the first projection of
y ′ = (y2 +y5y2 +y6y2 +y7y2,−y3y

2
2 −y3y4y

2
2 , 1+y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

5

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 − y2y3y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of
y ′ = (y2,−y3y

2
2 − y3y4y

2
2 , 1 + y4, 0), y(0) = (0, 1, 0, 1)

4 arctan is the first projection of
y ′ = (y2 +y5y2 +y6y2 +y7y2,−y3y

2
2 −y3y4y

2
2 , 1+y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

5

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 − y2y3y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of
y ′ = (y2,−y3y

2
2 − y3y4y

2
2 , 1 + y4, 0), y(0) = (0, 1, 0, 1)

4 arctan is the first projection of
y ′ = (y2 +y5y2 +y6y2 +y7y2,−y3y

2
2 −y3y4y

2
2 , 1+y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).

π is 4 arctan(1).

5

Polynomial ODE descriptive mathematics
exp is the solution of y ′ = y , y(0) = 1.
e is exp(1).
tanh is the solution of y ′ = 1− y2, y(0) = 1.
sin is the first projection of y ′ = (y ′1, y

′
2) = (y2,−y1),

y(0) = (0, 1).
cos its second projection.
sinh is the first projection of y ′ = (y2, y1), y(0) = (0, 1).
cosh its second projection.

1
1+t is the solution of y ′ = −y2, y(0) = 1

1
1+t2 is the first projection of y ′ = (−y2y

2
1 − y2y3y

2
1 , 1 + y3, 0),

y(0, 0, 0) = (1, 0, 1).
arctan is the first projection of
y ′ = (y2,−y3y

2
2 − y3y4y

2
2 , 1 + y4, 0), y(0) = (0, 1, 0, 1)

4 arctan is the first projection of
y ′ = (y2 +y5y2 +y6y2 +y7y2,−y3y

2
2 −y3y4y

2
2 , 1+y4, 0, 0, 0, 0),

y(0) = (0, 1, 0, 1, 1, 1, 1).
π is 4 arctan(1).

5

Polynomial ODE descriptive mathematics

2 is +1(1), with +1 solution of y ′ = 1, y(0) = 1.

3 is +2(1), with +2 first projection of solution of
y ′ = (y2 + y3, 0, 0), y(0) = (1, 1, 1).

. . .

k is +k−1(1), with +k−1 first projection of solution of
y ′ = (y2 + · · ·+ yk , 0, . . . , 0), y(0) = (1, 1, . . . , 1).

−k is −k−1(−1), with −k−1 first projection of solution of
y ′ = (−y2 − · · · − yk , 0, . . . , 0), y(0) = (1, 1, . . . , 1).

0 + z is the solution of +′(0, t) = 1, +(0, 0) = 0.

y + z is the solution of +′(t, z) = 1, +(0, z) = z .

0 ∗ z is the solution of ∗′(0, t) = 0, ∗(0, 0) = 0.

y ∗ z is the solution of ∗′(t, z) = z , +(0, z) = 0.

6

Polynomial ODE descriptive mathematics

2 is +1(1), with +1 solution of y ′ = 1, y(0) = 1.

3 is +2(1), with +2 first projection of solution of
y ′ = (y2 + y3, 0, 0), y(0) = (1, 1, 1).

. . .

k is +k−1(1), with +k−1 first projection of solution of
y ′ = (y2 + · · ·+ yk , 0, . . . , 0), y(0) = (1, 1, . . . , 1).

−k is −k−1(−1), with −k−1 first projection of solution of
y ′ = (−y2 − · · · − yk , 0, . . . , 0), y(0) = (1, 1, . . . , 1).

0 + z is the solution of +′(0, t) = 1, +(0, 0) = 0.

y + z is the solution of +′(t, z) = 1, +(0, z) = z .

0 ∗ z is the solution of ∗′(0, t) = 0, ∗(0, 0) = 0.

y ∗ z is the solution of ∗′(t, z) = z , +(0, z) = 0.

6

Polynomial ODE descriptive mathematics
1

x+1 is the solution of y ′ = −y2, y(0) = 1
1
2 is 1

1+1

ln(x + 1) is the solution of y ′ = (y1,−y2
2), y(0) = (0, 1).

ln(2) is ln(1 + 1).

However the current game is not so interesting:

I 1
x and ln(x) are not in that class.

• 1
x

is the solution of y ′ = −y 2, y(1) = 1,
• ln(x + 1) is the solution of y ′ = (y1,−y 2

2), y(1) = (0, 1).

I 1
x+2 is not in that class:

• 1
x+2

is the solution of y ′ = −y 2, y(0) = 1/2.

Let’s have more fun and authorize
I y(x0) = y0 instead of y(0) = y0, with y0 pODE computable

constant.
I n-variables functions.

7

Polynomial ODE descriptive mathematics
1

x+1 is the solution of y ′ = −y2, y(0) = 1
1
2 is 1

1+1

ln(x + 1) is the solution of y ′ = (y1,−y2
2), y(0) = (0, 1).

ln(2) is ln(1 + 1).

However the current game is not so interesting:

I 1
x and ln(x) are not in that class.

• 1
x

is the solution of y ′ = −y 2, y(1) = 1,
• ln(x + 1) is the solution of y ′ = (y1,−y 2

2), y(1) = (0, 1).

I 1
x+2 is not in that class:

• 1
x+2

is the solution of y ′ = −y 2, y(0) = 1/2.

Let’s have more fun and authorize
I y(x0) = y0 instead of y(0) = y0, with y0 pODE computable

constant.
I n-variables functions.

7

Polynomial ODE descriptive mathematics
1

x+1 is the solution of y ′ = −y2, y(0) = 1
1
2 is 1

1+1

ln(x + 1) is the solution of y ′ = (y1,−y2
2), y(0) = (0, 1).

ln(2) is ln(1 + 1).

However the current game is not so interesting:

I 1
x and ln(x) are not in that class.

• 1
x

is the solution of y ′ = −y 2, y(1) = 1,
• ln(x + 1) is the solution of y ′ = (y1,−y 2

2), y(1) = (0, 1).

I 1
x+2 is not in that class:

• 1
x+2

is the solution of y ′ = −y 2, y(0) = 1/2.

Let’s have more fun and authorize
I y(x0) = y0 instead of y(0) = y0, with y0 pODE computable

constant.
I n-variables functions.

7

A better game: n-variables functions, not so restricted
initial condition

We start from

0, 1, −1

and we consider (projections of) solutions of ordinary
differential equations of type{

y(x0) = y0

Jacobiany(x) = p(y(x))

where p is a (vector of) polynomials, y0 is in the class.

x

f (x)=y1(x)
f (1)

1

Terminology:

Such a function f (x) = y1...m(y) will be said to be generated.

f (1) will then be called a (pODE) computable real.
8

Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)
y ′4 = −y3(y1y4 − y5)
y ′5 = y5(y6y

2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0
y2(0) = 0
y3(0) = 0
y4(0) = 1
y5(0) = e
y6(0) = 1

considering y3 = sin y2,

y4 = cos y2 ,y5 = ee
y1 +t ,y6 = ey1

9

Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)
y ′4 = −y3(y1y4 − y5)
y ′5 = y5(y6y

2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0
y2(0) = 0
y3(0) = 0
y4(0) = 1
y5(0) = e
y6(0) = 1

considering y3 = sin y2,

y4 = cos y2 ,y5 = ee
y1 +t ,y6 = ey1

9

Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)
y ′4 = −y3(y1y4 − y5)
y ′5 = y5(y6y

2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0

y2(0) = 0
y3(0) = 0
y4(0) = 1
y5(0) = e
y6(0) = 1

considering y3 = sin y2,

y4 = cos y2 ,y5 = ee
y1 +t ,y6 = ey1

9

Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)
y ′4 = −y3(y1y4 − y5)
y ′5 = y5(y6y

2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0
y2(0) = 0

y3(0) = 0
y4(0) = 1
y5(0) = e
y6(0) = 1

considering y3 = sin y2, y4 = cos y2 ,y5 = ee
y1 +t

,y6 = ey1

9

Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)

y ′4 = −y3(y1y4 − y5)
y ′5 = y5(y6y

2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0
y2(0) = 0
y3(0) = 0

y4(0) = 1
y5(0) = e
y6(0) = 1

considering y3 = sin y2, y4 = cos y2 ,y5 = ee
y1 +t

,y6 = ey1

9

Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)
y ′4 = −y3(y1y4 − y5)

y ′5 = y5(y6y
2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0
y2(0) = 0
y3(0) = 0
y4(0) = 1

y5(0) = e
y6(0) = 1

considering y3 = sin y2, y4 = cos y2 ,y5 = ee
y1 +t

,y6 = ey1

9

Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)
y ′4 = −y3(y1y4 − y5)
y ′5 = y5(y6y

2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0
y2(0) = 0
y3(0) = 0
y4(0) = 1
y5(0) = e

y6(0) = 1

considering y3 = sin y2, y4 = cos y2 ,y5 = ee
y1 +t ,y6 = ey1

9

Programming Exercice

How to transform initial-value problem{
y ′1 = sin2 y2

y ′2 = y1 cos y2 − ee
y1 +t

{
y1(0) = 0
y2(0) = 0

into a polynomial initial value problem



y ′1 = y2
3

y ′2 = y1y4 − y5

y ′3 = y4(y1y4 − y5)
y ′4 = −y3(y1y4 − y5)
y ′5 = y5(y6y

2
3 + 1)

y ′6 = y6y
2
3



y1(0) = 0
y2(0) = 0
y3(0) = 0
y4(0) = 1
y5(0) = e
y6(0) = 1

considering y3 = sin y2, y4 = cos y2 ,y5 = ee
y1 +t ,y6 = ey1

9

Facts and Properties
The class of generated functions include all previously
mentioned functions, and most of the (analytic) common
functions.

It is stable by many operations:

I if f and g can be generated, then f + g , f − g , fg , 1
f , f ◦ g

can be generated.

It is stable by ODE solving:

I if f can be generated, and y satisfies y ′ = f (y) then y can be
generated.

A generated function must be analytic4.

I Famous analytic non-generable functions: [Shannon 41]
• Euler’s Gamma function Γ(x) =

∫∞
0

tx−1e−tdt [Hölder 1887]
• Riemann’s Zeta function ζ(x) =

∑∞
k=0

1
kx

[Hilbert].

The set of pODE computable constants is a field.
4Equals to its Taylor expansion in all point.

10

Facts and Properties
The class of generated functions include all previously
mentioned functions, and most of the (analytic) common
functions.

It is stable by many operations:

I if f and g can be generated, then f + g , f − g , fg , 1
f , f ◦ g

can be generated.

It is stable by ODE solving:

I if f can be generated, and y satisfies y ′ = f (y) then y can be
generated.

A generated function must be analytic4.

I Famous analytic non-generable functions: [Shannon 41]
• Euler’s Gamma function Γ(x) =

∫∞
0

tx−1e−tdt [Hölder 1887]
• Riemann’s Zeta function ζ(x) =

∑∞
k=0

1
kx

[Hilbert].

The set of pODE computable constants is a field.
4Equals to its Taylor expansion in all point.

10

Menu

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Descriptive Algorithmic Science

In Case of Turing Nostalgy

Conclusions

11

Polynomial ODE descriptive mathematics

A generated function must be analytic.

A basic non-generable function:

|x |

x

However |x | is “

e−µ uniformly

close” to a generable function:

I Formally: for all µ > 0, x ,

|x | − e−µ 6 y(x) 6 |x |+ e−µ

12

Polynomial ODE descriptive mathematics
A generated function must be analytic.
A basic non-generable function:

|x |

x

However |x | is “

e−µ uniformly

close” to a generable function:

I Formally: for all µ > 0, x ,

|x | − e−µ 6 y(x) 6 |x |+ e−µ

tanh(x)x

x

first projection of y ′ = ((1− y2
2)y3 + y2, 1− y2

2 , 1),
y(0) = (0, 0, 0).

12

Polynomial ODE descriptive mathematics
A generated function must be analytic.
A basic non-generable function:

|x |

x

However |x | is “

e−µ uniformly

close” to a generable function:

I Formally: for all µ > 0, x ,

|x | − e−µ 6 y(x) 6 |x |+ e−µ

tanh(2x)x

x

first projection of y ′ = (y4(1− y2
2)y3 + y2, y4(1− y2

2), 1, 0),
y(0) = (0, 0, 0, 2).

12

Polynomial ODE descriptive mathematics
A generated function must be analytic.
A basic non-generable function:

|x |

x

However |x | is “

e−µ uniformly

close” to a generable function:

I Formally: for all µ > 0, x ,

|x | − e−µ 6 y(x) 6 |x |+ e−µ

tanh(100x)x

x

first projection of y ′ = (y4(1− y2
2)y3 + y2, y4(1− y2

2), 1, 0),
y(0) = (0, 0, 0, 100).

12

Polynomial ODE descriptive mathematics
A generated function must be analytic.
A basic non-generable function:

|x |

x

However |x | is “

e−µ

uniformly close” to a generable function:

I Formally: for all µ > 0, x ,

|x | − e−µ 6 y(x) 6 |x |+ e−µ

tanh(Kx)x

x

first projection of y ′ = (y4(1− y2
2)y3 + y2, y4(1− y2

2), 1, 0),
y(0) = (0, 0, 0,K).

12

Polynomial ODE descriptive mathematics
A generated function must be analytic.
A basic non-generable function:

|x |

x

However |x | is “e−µ uniformly close” to a generable function:
I Formally: for all µ > 0, x ,

|x | − e−µ 6 y(x) 6 |x |+ e−µ

tanh(eµx)x

x

first projection of y ′ = (y4(1− y2
2)y3 + y2, y4(1− y2

2), 0, 0),
y(0) = (0, 0, 0, eµ).

12

Alternative statement
|x | is “uniformly close” to a generable function:

I Can we avoid such a “strange”/”unatural” dependance in the
initial condition?

I Yes, if we don’t ask for real time computation!

Replace real-time concept: By a more modern concept:

f (t) must be produced
at time t

with precision e−µ

f (t) must be produced
at time T

with precision e−µ

t

f (t)=y1(t)

tT

f (x)=y3(T)

y(0)

y(0) = F (0, µ) y(0) = (x , µ, y0)
f (t) = y1(t) f (x) = y1(T)

13

Alternative statement
|x | is “uniformly close” to a generable function:

I Can we avoid such a “strange”/”unatural” dependance in the
initial condition?

I Yes, if we don’t ask for real time computation!

Replace real-time concept: By a more modern concept:

f (t) must be produced
at time t

with precision e−µ

f (t) must be produced
at time T

with precision e−µ

t

f (t)=y1(t)

tT

f (x)=y3(T)

y(0)

y(0) = F (0, µ) y(0) = (x , µ, y0)
f (t) = y1(t) f (x) = y1(T)

13

This is a more general notion of computability

A generated function can always be computed in that sense.

Ilustration for |x |
I Simple idea: consider a path y(t) going from

y(0) = (x , µ, . . .) to y(T) = (x , µ, abs(x , µ), . . .)
where abs(x , µ) = tanh(e−µx)x is previous function.

• For example, for T = 1,

y(t) = (x , µ, abs(tx , tµ), t)

solution of y′(t) = (0, 0, py(y(t)), 1), y(0) = (x, µ, 1, 1),
with

I Graphically:

y3(T)

x

with |x | − e−µ 6 y3(T) 6 |x |+ e−µ, x = y1(0), µ = y2(0)

14

This is a more general notion of computability

A generated function can always be computed in that sense.

Ilustration for |x |
I Simple idea: consider a path y(t) going from

y(0) = (x , µ, . . .) to y(T) = (x , µ, abs(x , µ), . . .)
where abs(x , µ) = tanh(e−µx)x is previous function.

• For example, for T = 1,

y(t) = (x , µ, abs(tx , tµ), t)

solution of y′(t) = (0, 0, py(y(t)), 1), y(0) = (x, µ, 1, 1),
with
py (y(t)) = (1− tanh2(etµtx))(µetµtx + etµx) + x tanh(etµtx)

I Graphically:

y3(T)

x

with |x | − e−µ 6 y3(T) 6 |x |+ e−µ, x = y1(0), µ = y2(0)

14

This is a more general notion of computability
A generated function can always be computed in that sense.
Ilustration for |x |

I Simple idea: consider a path y(t) going from
y(0) = (x , µ, . . .) to y(T) = (x , µ, abs(x , µ), . . .)

where abs(x , µ) = tanh(e−µx)x is previous function.

• For example, for T = 1,

y(t) = (x , µ, abs(tx , tµ), t)

solution of y′(t) = (0, 0, py(y(t)), 1), y(0) = (x, µ, 1, 1),
with
py (y(t)) =
(1−tanh2(ey4y2y4y1))(y2e

y4y2y4y1 +ey4y2y1)+y1 tanh(ey4y2y4y2)

I Graphically:

y3(T)

x

with |x | − e−µ 6 y3(T) 6 |x |+ e−µ, x = y1(0), µ = y2(0)14

If you want only polynomial ODEs:
I Do as in previous exercice for the system for |x |:


y ′1 = 0
y ′2 = 0
y ′3 = (1− tanh2(ey4y2y4y1))(y2ey4y2y4y1 + ey4y2y1) + y1 tanh(ey4y2y4y2)
y ′4 = 1
y1(0) = x
y2(0) = µ
y3(0) = 1
y4(0) = 1

y3(T)

x

Other paths could be used.
E.g. if one wants better and better precision, or that this
works even for t ≥ 1.

y(t) = (x , µ, abs(min (tx , 1), tµ), t)

15

If you want only polynomial ODEs:
I Do as in previous exercice for the system for |x |:


y ′1 = 0
y ′2 = 0
y ′3 = (1− tanh2(ey4y2y4y1))(y2ey4y2y4y1 + ey4y2y1) + y1 tanh(ey4y2y4y2)
y ′4 = 1
y1(0) = x
y2(0) = µ
y3(0) = 1
y4(0) = 1

y3(T)

x

Other paths could be used.
E.g. if one wants better and better precision, or that this
works even for t ≥ 1.

y(t) = (x , µ, abs(
1 + tx − abs(tx − 1, tµ)

2
, tµ), t)

using min(a, b) = (a + b − |a− b|)/2.

15

Main Statement: Computability

|x | can be computed in that sense.

Γ, ζ can be computed in that sense.

Theorem [OB, M. Campagnolo, D. Graça, E. Hainry5] Any
computable function can be computed in that sense, and
conversely.

The notion of computable function can be defined using
pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define computable functions.

5(OB, D. Graça, A. Pouly 2016’s) Improvment of Journal of Complexity,
2007, OB, M. Campagnolo, D. Graça, E. Hainry

16

Main Statement: Computability

|x | can be computed in that sense.

Γ, ζ can be computed in that sense.

Theorem [OB, M. Campagnolo, D. Graça, E. Hainry5] Any
computable function can be computed in that sense, and
conversely.

The notion of computable function can be defined using
pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define computable functions.

5(OB, D. Graça, A. Pouly 2016’s) Improvment of Journal of Complexity,
2007, OB, M. Campagnolo, D. Graça, E. Hainry

16

Main Statement: Computability

|x | can be computed in that sense.

Γ, ζ can be computed in that sense.

Theorem [OB, M. Campagnolo, D. Graça, E. Hainry5] Any
computable function can be computed in that sense, and
conversely.

The notion of computable function can be defined using
pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define computable functions.

5(OB, D. Graça, A. Pouly 2016’s) Improvment of Journal of Complexity,
2007, OB, M. Campagnolo, D. Graça, E. Hainry

16

Main Statement: Computability

|x | can be computed in that sense.

Γ, ζ can be computed in that sense.

Theorem [OB, M. Campagnolo, D. Graça, E. Hainry5] Any
computable function can be computed in that sense, and
conversely.

The notion of computable function can be defined using
pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define computable functions.

5(OB, D. Graça, A. Pouly 2016’s) Improvment of Journal of Complexity,
2007, OB, M. Campagnolo, D. Graça, E. Hainry

16

Main Statement: Computability

|x | can be computed in that sense.

Γ, ζ can be computed in that sense.

Theorem [OB, M. Campagnolo, D. Graça, E. Hainry5] Any
computable function can be computed in that sense, and
conversely.

The notion of computable function can be defined using
pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define computable functions.

5(OB, D. Graça, A. Pouly 2016’s) Improvment of Journal of Complexity,
2007, OB, M. Campagnolo, D. Graça, E. Hainry

16

Formal Theorem6

Let a, b ∈ Q.

f ∈ C 0([a, b],R) is computable

iff

∃ polynomials p, q s.t. ∀x ∈ dom f ,
there exists a (unique) y satisfying for all t ∈ R+:

I y(0) = q(x , µ) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1

I y satisfies a pODE

I if t > T = 1 then ‖y1..m(t)− f (x)‖∞ 6 e−µ

I y1..m is e−µ-close to f (x) after time T = 1

Picture:

tT=1

f (x)=y3(T)

y(0)=q(x ,µ)

6(OB, D. Graça, A. Pouly 2016’s) Improvment of Journal of Complexity,
2007, OB, M. Campagnolo, D. Graça, E. Hainry

17

Formal Theorem6

Let a, b ∈ Q.

f ∈ C 0([a, b],R) is computable

iff

∃ polynomials p, q s.t. ∀x ∈ dom f ,
there exists a (unique) y satisfying for all t ∈ R+:

I y(0) = q(x , µ) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1
I y satisfies a pODE

I if t > T = 1 then ‖y1..m(t)− f (x)‖∞ 6 e−µ

I y1..m is e−µ-close to f (x) after time T = 1

Picture:

tT=1

f (x)=y3(T)

y(0)=q(x ,µ)

6(OB, D. Graça, A. Pouly 2016’s) Improvment of Journal of Complexity,
2007, OB, M. Campagnolo, D. Graça, E. Hainry

17

Menu

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Descriptive Algorithmic Science

In Case of Turing Nostalgy

Conclusions

18

Time complexity for continuous systems

Variable t is rather arbitary.

y(0) = g(x) y ′ = h(y)

t

f(x)

g(x)

y1(T)

T=1

z(t)=y(et)

;

z(0) = g̃(x) z ′ = h̃(z)

t

f(x)

g̃(x)

z1(t)

T=1

y1(T)

w(t)=y
(
ee

t
)

;

w(0) = ĝ(x) w ′ = ĥ(w)

t

f(x)

ĝ(x)

w1(t)

T=1

y1(T)

19

Time complexity for continuous systems

Variable t is rather arbitary.

y(0) = g(x) y ′ = h(y)

t

f(x)

g(x)

y1(T)

T=1

z(t)=y(et)

;

z(0) = g̃(x) z ′ = h̃(z)

t

f(x)

g̃(x)

z1(t)

T=1

y1(T)

w(t)=y
(
ee

t
)

;

w(0) = ĝ(x) w ′ = ĥ(w)

t

f(x)

ĝ(x)

w1(t)

T=1

y1(T)

19

Time complexity for continuous systems

Variable t is rather arbitary.

y(0) = g(x) y ′ = h(y)

t

f(x)

g(x)

y1(T)

T=1

z(t)=y(et)

;

z(0) = g̃(x) z ′ = h̃(z)

t

f(x)

g̃(x)

z1(t)

T=1

y1(T)

w(t)=y
(
ee

t
)

;

w(0) = ĝ(x) w ′ = ĥ(w)

t

f(x)

ĝ(x)

w1(t)

T=1

y1(T)

19

A Simple & Key Idea: curvi-linear abscissa

t

f(x)

q(x)

y1(t)

{
y(0)= q(x)
y ′(t)= p(y(t))

Length based: T

`(t) = length of y over [0, t]

=

∫ t

0
‖p(y(u))‖∞ du

Consider parameterization

t = length of y over [0, t]

I.e.:
Follow curve at constant speed.

20

Main Statement: Complexity

Theorem7 Any polynomial time computable function can be
computed in polynomial length, and conversely.

The notion of polynomial time computable function can
be defined using pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define polynomial time computable functions.

7ICALP 2016 Track B Best Paper Award, OB, D. Graça, A. Pouly
21

Main Statement: Complexity

Theorem7 Any polynomial time computable function can be
computed in polynomial length, and conversely.

The notion of polynomial time computable function can
be defined using pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define polynomial time computable functions.

7ICALP 2016 Track B Best Paper Award, OB, D. Graça, A. Pouly
21

Main Statement: Complexity

Theorem7 Any polynomial time computable function can be
computed in polynomial length, and conversely.

The notion of polynomial time computable function can
be defined using pODE only !!

I No need to talk of Turing machines, or equivalent concept to
define polynomial time computable functions.

7ICALP 2016 Track B Best Paper Award, OB, D. Graça, A. Pouly
21

Formal Theorem 8

Let a, b ∈ Q.

f ∈ C 0([a, b],R) is polynomial-time computable

iff

∃ polynomials p, q,Ω s.t. ∀x ∈ dom f ,
there exists a (unique) y satisfying for all t ∈ R+:

I y(0) = q(x , µ) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1

I y satisfies a pODE

I if leny (0, t) > Ω(‖x‖∞ , µ) then ‖y1..m(t)− f (x)‖∞ 6 e−µ

I y1..m is e−µ-close to f (x) after a polynomial length

Picture:

t
T=Ω(x ,µ)

f (x)=y3(T)

y(0)=q(x ,µ)

8ICALP 2016 Track B Best Paper Award, OB, D. Graça, A. Pouly
22

Formal Theorem 8

Let a, b ∈ Q.

f ∈ C 0([a, b],R) is polynomial-time computable

iff

∃ polynomials p, q,Ω s.t. ∀x ∈ dom f ,
there exists a (unique) y satisfying for all t ∈ R+:

I y(0) = q(x , µ) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1
I y satisfies a pODE

I if leny (0, t) > Ω(‖x‖∞ , µ) then ‖y1..m(t)− f (x)‖∞ 6 e−µ

I y1..m is e−µ-close to f (x) after a polynomial length

Picture:

t
T=Ω(x ,µ)

f (x)=y3(T)

y(0)=q(x ,µ)

8ICALP 2016 Track B Best Paper Award, OB, D. Graça, A. Pouly
22

For Discrete People 9

Fix a “reasonable” way to encode words w , length of input, and
decision:

For example ψ(w) =
(∑|w |

i=1 wik
−i , |w |

)
, and > 1, 6 −1.

Then:

L ⊆ {0, 1}∗ is polynomial-time computable
iff

∃ polynomials p, q,Ω s.t. ∀w ,
there exists a (unique) y satisfying for all t ∈ R+:

I y(0) = q(ψ(w)) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1

I y satisfies a pODE

I if leny (0, t) > Ω(|w |) then |y1(t)| > 1

I decision is made after a polynomial length

I w ∈ L iff y1(t) > 1

I and corresponds to L
Picture:

t
T=Ω(x)

>1 or 6−1

y(0)=q(ψ(w)))

9ICALP 2016 Track B Best Paper Award, OB, D. Graça, A. Pouly

23

For Discrete People 9

Fix a “reasonable” way to encode words w , length of input, and
decision:

For example ψ(w) =
(∑|w |

i=1 wik
−i , |w |

)
, and > 1, 6 −1.

Then:

L ⊆ {0, 1}∗ is polynomial-time computable
iff

∃ polynomials p, q,Ω s.t. ∀w ,
there exists a (unique) y satisfying for all t ∈ R+:

I y(0) = q(ψ(w)) and y ′(t) = p(y(t)) with ‖y ′(t)‖∞ > 1
I y satisfies a pODE

I if leny (0, t) > Ω(|w |) then |y1(t)| > 1
I decision is made after a polynomial length

I w ∈ L iff y1(t) > 1 I and corresponds to L
Picture:

t
T=Ω(x)

>1 or 6−1

y(0)=q(ψ(w)))

9ICALP 2016 Track B Best Paper Award, OB, D. Graça, A. Pouly

23

Menu

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Descriptive Algorithmic Science

In Case of Turing Nostalgy

Conclusions

24

Finding zeros of a function:
x ′ = −f (x)

Linear Programming:

See e.g.: The Nature of

Computation, C. Moore and S.

Mertens, Oxford University Press.

Computing optimal
solutions:

Neural Networks, Deep
learning, Differential Neural
Computers, Neural Turing
Machines, and variants. . .

And Turing machines.

25

Finding zeros of a function:
x ′ = −f (x)

Linear Programming:

See e.g.: The Nature of

Computation, C. Moore and S.

Mertens, Oxford University Press.

Computing optimal
solutions:

Neural Networks, Deep
learning, Differential Neural
Computers, Neural Turing
Machines, and variants. . .

And Turing machines.

25

Menu

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Descriptive Algorithmic Science

In Case of Turing Nostalgy

Conclusions

26

For Nostalgic of Turing Machines:
Some ideas of the proof

Polynomial time ODE can be solved in a time polynomial in
their length10.

Need to simulate a Turing machine using polynomial ODEs.

I Ingredient 1: simulating a Turing machine using iterations of
piecewise linear function

I Ingredient 2: iterating a function using polynomial ODEs

I Ingredient 3: everything must be dealt with analytic
functions, i.e. by keeping errors under control.

10TCS 2016 A. Pouly, D. Graça
27

Turing Machines

Let M be some one tape Turing machine, with m states and
10 symbols.

If
...B B B a−k a−k+1... a−1 a0 a1... an B B B...

is the tape content of M, it can be seen as

y1 = a0a1...an
y2 = a−1a−2...a−k

(1)

The configuration of M is then given by three values: its
internal state s, y1 and y2.

28

Alternative View of a Turing Machine

y1 = a010−1 + a110−2 + ...+ an10−n−1

y2 = a−110−1 + a−210−2 + ...+ a−k10−k . (2)

y(t + 1) = f (y(t))

Turing Machine PAM

State Space State Space
{q1, q2, · · · , qm} × Σ∗ [1,m + 1]× [0, 1]

State (qi , a−m...a−1, a0...an) State x = s + y2, y = y1

q1:
if 2 is read,
then write 4; goto q2

{
x := x + 1
y := y + 2

10

if

{
1 ≤ x < 2
2

10
≤ y < 3

10

q5:
if 3 is read,
then move right; goto
q1

{
x := x−5

10
+ 3

10
+ 1

y := 10 ∗ y − 3
if

{
5 ≤ x < 6
3

10
≤ y < 4

10

q3:
if 5 is read,
then move left; goto q7

{
x := 10(x − 3)− j + 7

y := y
10

+ j
10

if

{
3 + j

10
≤ x < 3 + j+1

10
5

10
≤ y < 6

10

for j ∈ {0, 1, . . . , 9}.

Key remark: f is piecewise affine
29

Morality
If you prefer, a Turing Machine can be seen as a piecewise
affine function

I xi (t + 1) = σ
(∑N

j=1 ai,jxj(t) + ci
)

is even (basically)

sufficient.
σ

x

I Analytic version:

tanh(x)

x

It remains to simulate

y(t + 1) := y(t)

for t = 1, 2,

Remaining analytic. . .
30

Example: y(t + 1) := 2 ∗ y(t)

0.5 1 1.5 2 2.5 3

Simulation of iterations of h(n) = 2n by ODEs.

31

Ingredient 2: Branicky’s clock (1995): with non-analytic
functions

We want to alternate z2 := ω(z1), z1 := z2.

Key observation: the solution of

y ′ = c(g − y)3φ(t)

converges at t = 1/2 the goal g with some arbitray precision,
independantly from initial condition at t = 0
for any function φ of positive integral if c is sufficiently big.

I If you prefer, this roughly does y(1/2) := g .

The following system is a solution{
z ′1 = c1(z2 − z1)3θ(− sin(2πt))
z ′2 = c2(ω(z1)− z2)3θ(sin(2πt))

{
z1(0) = x0

z2(0) = x0

considering functions:
I θ such that θ(x) = 0 if x ≤ 0, θ(x) = x2 if x ≥ 0.

32

Menu

Descriptive Mathematics

Descriptive Computer/Computability Science

Descriptive Computer/Complexity Science

Descriptive Algorithmic Science

In Case of Turing Nostalgy

Conclusions

33

Conclusion/Take Home Message

Programming with ODEs is simple and fun.

Many concepts from mathematics can be defined using
polynomial ODEs

Many concepts from computer science can be defined using
polynomial ODEs

I Computable functions.

I Polynomial Time Computable Functions

I NP, PSPACE , . . . ?

34

Conclusion/Take Home Message

Programming with ODEs is simple and fun.

Many concepts from mathematics can be defined using
polynomial ODEs

Many concepts from computer science can be defined using
polynomial ODEs

I Computable functions.

I Polynomial Time Computable Functions

I NP, PSPACE , . . . ?

34

	Descriptive Mathematics
	Descriptive Computer/Computability Science
	Descriptive Computer/Complexity Science
	Descriptive Algorithmic Science
	In Case of Turing Nostalgy
	Conclusions

