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Boolean	Automata	Networks:	discrete	determinis3c	dynamical		
systems	over	a	graph	only	with	states	0	or	1	on	the	ver3ces.	
	
	
	
A	vertex		updates	it	state	following	a	boolean	rule	depending	
	of	the	states	of	its	graph’s	neighbors.	



Block-	sequen3al	updates:	
	
Consider	a	par33on																											of	the	set		{1,	…,	n}	
	
We	update		the	blocks	one	by	one:	
	
To	update	the	k-th	block	we	consider	the	new	state	of	every	sites	belong	to	previous	blocks.	
	 € 

{I1,...,Ip}

Parallel	or	synchronous	update:		Every	site	is	updated	at	
	the	same	3me.	
	
Sequen3al	update:	sites	are	updated	one	by	
	one	in	a	prescribed	order.		

The	dynamics	



	Cellular	Automata:	on	d-dimensional	grids		
	with	the	same	local	func3on	in	every	site,			
updated	(usually)		in	parallel.		

Arbitrary	finite	graph	modelling	regulatory	gene3c	networks	

Par3cular	cases	



One	and	two-dimensional	grids	

Von	Neumann	neighborhood	
		Moore	neighborhood	



Arabidopsis	regula3on	threshold	network	

Bioinforma3cs.	1999	Jul-Aug;15(7-8):593-606.	
Gene3c	control	of	flower	morphogenesis	in	Arabidopsis	thaliana:		
a	logical	analysis.	Mendoza	L,	Thieffry	D,	Alvarez-Buylla	ER.	

	

Demongeot	J,	G.	E,	Morvan	M,	Noual	M,	Sené	S	(2010)	Ahrac3on	
Basins	as	Gauges	of	Robustness		
against	Boundary	Condi3ons	in	Biological	Complex	Systems.	PLoS	ONE	
5(8):	e11793.	doi:10.1371	



Parallel	
dynamics	
	of	Yeast1	

Parallel	
dynamics	
	of	yeast2	

Decontruc3on	and	Dynamical	robustness	
of	regulatory	networks:	applica3on	to	the	Yeast	
cell	cycle	networks.	E.G,	M.	Montalva	and	G.		Ruz,	
Bull	Math	Biol	(2013)	75,	939-966	

Yeast	cell-cycle	
Threshold	Networks	



€ 

F{1,2,3}(x1,x2,x3) = (x2,x1 + x3,¬x2)
F{1,2}{3}(x1,x2,x3) = (x2,x1 + x3,(¬x1)(¬x3))
F{1}{2,3}(x1,x2,x3) = (x2,x2 + x3,¬x2)
F{1}{2,3}(x1,x2,x3) = (x2,x2 + x3,(¬x2)(¬x3))
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Some	Block-Sequen3al	
	par33ons	for	three		
													sites	

EXAMPLE	
The(	directed)	graph	

parallel	

sequen3al	
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Cycles	for	synchronous	and	sequen3al	updates	
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Parallel	update:	3-cycles	
Sequen3al	update:	2-cycle	

€ 

G :{0,1}3 →{0,1}3

g1(x1,x2,x3) = x2
g2(x1,x2,x3) = x3
g3(x1,x2,x3) = x2

€ 

F :{0,1}3 →{0,1}3

f1(x1,x2,x3) = x2
f2(x1,x2,x3) = x3
f3(x1,x2,x3) = x1
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2	

3	

1	

2	
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000	0	
001	1	
010	1	
011	0	
100	1	
101	0	
110	0	
111	1	

In this section, we determine which of them are block invariant for all n > 3.
The above implies that the set of periodic configurations P

r associated to
the rule r must be the same if the ECA rule r is block updated. So, a first
step is to discard those rules where this does not occur. For example, in
Figure 1 we show the evolution of the ECA rule ⇡-invariant 150 for the initial
configuration 1101100 through of seven different block updates; s1, s2 and s3

(sequential updates), s4, s5 and s6 (block updates) and s7 (the parallel one).
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FIGURE 1
Evolution of the ECA rule 150 for the initial configuration 1101100 and for 3 sequen-
tial updates (left side), 3 block updates (middle) and the parallel update (right side).
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Elementary	one	dimensional	
Automaton	with	periodic	
	condi3ons	and	the	linear	

local	rule	150	
	



dynamics	for	the	majority		rule	in	a		
two	dimensional	grid	

We	consider	a	4x4	lance	with	periodic	condi3ons,	
nearest	interac3ons,	states	0	or	1,	and	the	local	majority	func3on:	
	
If	the	number	of	ones	is	bigger	or	equal	to	the	number	of	zeros	then	
the	site	takes	the	value	1	

€ 

x'ij =1

€ 

iff

€ 

xi−1, j + xi+1, j + xi, j−1 + xi, j+1 ≥ 2



Dynamics:	two	cycles	and	fixed	points;	different	behavior	for	different	updates	



.	
	
														Different	updates		give		

												different	
												dynamic	behavior	



Different	updates	schemes	on	one	dimensional	
																				elementary	periodic	CAs	

n≥3		sites	



An	ECA	is	sequen3al	invariant	If	and	only	if	for	
n>3			and	any	permuta3on	(sequen3al	update),		
the	set	of	ahractors	is	the	same.			

Clearly,		if	the	ECA	admits	only	fixed	points	it	is	trivially	sequen3al	invariant	



		Theorem	(Macauley,	Mcammond,Morveit	(JCA2013)	
	
There	exists	41	non-equivalent		sequen3al-invariant	ECA	



period k > 1 is a set of k configurations x(0), x(1), . . . , x(k � 1) such that
the F (x(t+ 1(modk))) = x(t). We call an attractor a fixed point or a limit
cycle.

Definition 5. ECAs given by f : {0, 1}3 �! {0, 1} are block invariant if
Per(Fs) = Per(Fs0 ) for all block updates s, s0 2 Sn.
The function f is sometimes called a Wolfram rule.

3 BLOCK INVARIANT ECAS

In [5] the authors proved that the 41 rules showed in Table 1 are ⇡-independent
for all n > 3, i.e., P r = Per(F r

s ) = Per(F r
s0 ) for all sequential updates s, s0 2

Sn and n > 3 (r denotes the Wolfram’s rule r).

Rule fi(u, v, w) Rule fi(u, v, w)

0 0 108 uvw + vw + uv
1 u v w 128 uvw
4 uvw 129 u v w + uvw
5 uw 132 uvw + uvw
8 uvw 133 uvw + uw
9 u v w + uvw 136 vw

12 uv 137 u v w + vw
13 uw + uv 140 uv + vw
28 uv w + uv 141 uw + vw
29 v w + uv 150 uv w + uvw + u vw + uvw
32 uvw 152 uv w + vw
40 uvw + uvw 156 uv w + uv + vw
51 v 160 uw
54 uvw + uv + vw 164 uvw + uw
57 uvw + v w + uv 168 uw + vw
60 uv + uv 172 uv + uw
72 uvw + uvw 184 uv + vw
73 u v w + uvw + uvw 200 uv + vw
76 vw + uv 204 v
77 uw + vw + uv 232 uv + uw + vw
105 u v w + uvw + uvw + uvw

TABLE 1
The 41 representative rules ⇡-independent of [5] and its minimal disjunctive normal
form representations. At each time step, the value xi is updated according to the rule
x

0
i = fi(u, v, w) where u = xi�1, v = xi and w = xi+1.

4



Between	those	41	rules	we	are	interested		
To	characterize	those	which	are	invariant	for	every	

Block	Sequen3al	update	



For	instance	the	rule	5	is	not	block-sequen3al	invariant	
	
It	is	enough	to	consider	n=4	
	
And	the	updates	(3,4)(1,2)			and	(4)(3)(1,2)	

The	ahractors	for	(3,4)(1,2)	are:		0000;	0011;	1100;	i.e.,		0,		3,	12		

0000	
0011	
1100	
0000	

3-cycle	

The	ahractors	for	(4)(3)(1,2)	are:		0000	and	0101,	i.e.	0	and	5	
	

	f(0,0,0)=1	
f(x,y,z)=0	else	

0000	
0101	
0000	

Rule	5	



Theorem		(Montalva,	Morveit,	Ramirez,	EG)	
	
For	n>3,	there	are	15	non-equivalent	rules	
	
	block-sequen3al	invariants.	

0,	4,	8,	12,	28,	51,	72,	76,	128,	132,	136,	140,	141,	200,	204	



Theorem		(Montalva,	Morveit,	Ramirez,	EG)	
	
For	n>3,	there	are	15	non-equivalent	rules	
	
	block-sequen3al	invariants.	

0,	4,	8,	12,	28,	51,	72,	76,	128,	132,	136,	140,	141,	200,	204	



Consider	for	instance	the	rule		32	which	is	not	block-invariant	
But	it	is	for	n	odd.	

000	0	
001	0	
010	0	
011	0	
100	0	
101	1	
110	0	
111	0	

Clearly	*	00*	remains	stable.		And	at	each	step	
		0s	are	added		at	both	sides	…	

The	other	case:		10101010	…..		
is		a	two	cycle	only	for	n	even	

	
	
	

If	there	are	two	1’s	together		every	update	create		a	block	00	
	
	
So	the	rule	32	is	block-	invariant	only	for		n	odd	
	
(	9n	parallel	the	2-cycle	exist	only	for	n	even).			



Rule s5 = (1)(2, 3, 4, 5, 6) s6 = (4, 5, 6, 1, 2)(3)

164 (46, 53) (29, 43)

TABLE 4
Limit cycles for rule 164 under block updates s5 = (1)(2, 3, 4, 5, 6) and s6 =
(4, 5, 6, 1, 2)(3) with n = 6. The notation used is the same as in Table 2.

In Figure 2 we show the evolution in time of the 15 remaining ECA’s for some
block updates, including the parallel (s30) and a sequential one (s1).
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0, 8, 72, 128
136, 200

4, 12, 76, 132,
140, 204 28 51 141

Block invariant rules

FIGURE 2
Evolution of the 15 block invariant Wolfram’s rules starting with a single
one in the 16th position, under the block updates s1 = (1)(2) · · · (30),
s2 = (1, 2)(3, 4) · · · (29, 30), s3 = (1, 2, 3)(4, 5, 6) · · · (28, 29, 30), s7 =
(1, ..., 7)(8, ..., 14) · · · (22, ..., 28)(29, 30), s10 = (1, ..., 10) · · · (21, ..., 30) and
s30 = (1, ..., 30).

In next three theorems, we will prove that these rules are block invariants.

Theorem 1. For all n > 3, the Wolfram’s rules 0, 4, 8, 12, 51, 72, 76, 128,
132, 136, 140, 200 and 204 are block invariant.
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Rule s5 = (1)(2, 3, 4, 5, 6) s6 = (4, 5, 6, 1, 2)(3)

164 (46, 53) (29, 43)

TABLE 4
Limit cycles for rule 164 under block updates s5 = (1)(2, 3, 4, 5, 6) and s6 =
(4, 5, 6, 1, 2)(3) with n = 6. The notation used is the same as in Table 2.

In Figure 2 we show the evolution in time of the 15 remaining ECA’s for some
block updates, including the parallel (s30) and a sequential one (s1).
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FIGURE 2
Evolution of the 15 block invariant Wolfram’s rules starting with a single
one in the 16th position, under the block updates s1 = (1)(2) · · · (30),
s2 = (1, 2)(3, 4) · · · (29, 30), s3 = (1, 2, 3)(4, 5, 6) · · · (28, 29, 30), s7 =
(1, ..., 7)(8, ..., 14) · · · (22, ..., 28)(29, 30), s10 = (1, ..., 10) · · · (21, ..., 30) and
s30 = (1, ..., 30).

In next three theorems, we will prove that these rules are block invariants.

Theorem 1. For all n > 3, the Wolfram’s rules 0, 4, 8, 12, 51, 72, 76, 128,
132, 136, 140, 200 and 204 are block invariant.
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Threshold	networks	

€ 

for
€ 

€ 

1≤ i ≤ n

€ 

b = (bi)
€ 

the	weight	integral	matrix	

the	threshold	vector	
€ 

€ 

W = (wij )

€ 

if	

€ 

€ 

u ≥ 0
	0								otherwise	

€ 

" x i = H( wij x j
j =1

n

∑ − bi)

€ 

x ∈{0,1}n

€ 

H(u) =1

	E.G	and	G.	Ruz,	Dynamics	of	Neural	Networks	over	undirected	graphs,	
	Neural	Networks,	Vol	63,	156-169,	2015		
	



For	arbitrary	matrices	W	previous	model	may	accept,		
Iterated	in	parallel	or	sequen3ally,	long	period	cycles		
and	transients	…	
	But	when	W	is	symmetric	the	network	converges	to	
	fixed	point	or	two	periodic	cycles	(parallel	update),		
	
And,	if	diag(W)≥0	to	fixed	point	(sequen3al	update).	
	

E.G,	J.	Olivos,	Periodic	behaviour	of	generalized	threshold	func3ons,		
Discrete	mathema3cs,	vol	30,	pp	187-189,	1980.	

E.G.,	Fixed	Point	behavior	of	threshold	func3ons	on	a	finite	set,	SIAM	Journal	on		
Alg.		And	Discrete	Methods,	vol	3(4),	pp	2554-2558,	1982.	



Further	for	W	symmetric	the	network	admits	an	energy:	

€ 

E(x(t)) = − xi
i=1

n

∑ (t) wij
j=1

n

∑ x j (t −1) + bi
i=1

n

∑ (xi(t) + xi(t −1))

€ 

E(x) = −
1
2

wij
j=1

n

∑
i=1

n

∑ xix j + bi
i=1

n

∑ xi

If		diag	(W)	≥	0,	Sequen3al	update:	

Parallel	update:	



Which	implies	that:	
	
1)	for	the	parallel	upda3ng	the	ahractors	are	only	
Fixed	points	or	two	cycles.	
	
2)	For	the	sequen3al	upda3ng	and	diag(W)≥0	there	are	only	fixed	points.	
	
3)	In	both	situa3ons	transients	are	bounded		by				α⎪⎪W⎪⎪x⎪⎪b⎪⎪	

€ 

ΔE = E(x(t)) − E(x(t −1) < 0 If	and	only	if	

€ 

x(t) ≠ x(t − 2)

And	for	the	sequen3al	itera3on		

€ 

" x ≠ x

€ 

ΔE = E(x ') − E(x) < 0

€ 

€ 

" x ≠ xiff	



The	most	general	dynamical	result	about	
Threshold	networks:	

€ 

s = {I1,...,Ip}

€ 

W (Ik )

€ 

k ∈{1,..., p}

Consider	the	block-sequen3al	scheme	

The	symmetrical	threshold	network				T=(W,	b,	s)	

Let		 the	sub-matrix	associated	to	the	k-th	block	

If	for	every		 is	non-nega3ve-definite	

€ 

W (Ik )

The	network	converges	to	fixed	points	

E.	G.,	F.	Fogelman-Soulie,	D.	Pellegrin,	Decreasing	energy	func3ons	as	a	tool	

For	studying	threshold	networks,	Discrete	Applied	Mathema3cs,	vol	12,	pp261-277,	1985.	



€ 

ΔE = − (x 'i
i∈I k

∑ − xi)( wij
j=1

n

∑ x j − bi) −
1
2

(x'i
i∈I k

∑ − xi) (x j '
i∈I k

∑ − x j )

€ 

ΔE = δ i
i∈I k

∑ −
1
2
y tW (Ik )y

€ 

y = (x '−x)∈{−1,0,1}n

€ 

δ i = −(x 'i −xi)( wij
j=1

n

∑ x j − bi)

																																																									⇒				and	x’≠x	 there	exists	

€ 

i∈{1,..,n}

€ 

δ i ≤ −
1
2

€ 

ΔE < 0

where	

such	that		

Then		

€ 

x'= (xI1 ,...,xI k−1 ,.x 'I k ,xI k+1
,...,xI p )	The	update	of	the	k-th	block:	

(since	W	is	an	integral	matrix)	

Sketch	of	the	proof:	

−
1
2
ytW (I )

−
1
2
ytWy ≤ 0Since	W(I)	is	non-nega3ve	definite	



We	will	suppose	now	that	every	matrix	W	is	the	incidence	matrix	of			
an	undirected	graph	G=(V,E),	so	their	entries	belong	to	the	set	{0,1}		
	W=W(G)=																	eventually	with	loops		
	

€ 

(wij )

€ 

(wii =1)

€ 

α(G) = −n − k + 2m − 4 p

n		=	|V|,		
m	=|E|,		(without	loops)	
K		=	the	number	of	loops,	
p	=	the	minimum	number	of	edges	to	remove		
						such	that	the	sub-graph	is	bipar3te.	
	

Consider	the	quan3ty:	



1	

3	4	

2	

|V|	=	4	
	
|E|	=	6	

k	=	2	

p	=	2	

1	

3	4	

2	

Maximum	bipar3te	sub-graph	

€ 

α(G) = −4 − 2 + 2 × 6 − 4 × 2 = −2 < 0

Example	



	
	

Theorem-1	

Consider			an	undirected	graph	G=(V,E),	W=W(G),	b	a	threshold	vector.	

and	the	network	updated	in	parallel,	N=	(W,	b,	{1,	…,n})	

		

€ 

α(G') < 0

€ 

α(G') ≥ 0

For	any	G’	sub-graph	of	G		(by	dele3ng	ver3ces)		

€ 

⇒ Fixed	points	for	any		
threshold	vector	

€ 

⇒ There	exists	a	threshold	vector		
such	that	two	cycles	appears	

In		E.G	and	G.	Ruz,	Dynamics	of	Neural	Networks	over	undirected	graphs,	Neural	Networks,	Vol	63,	156-169,	2015		

	



1	

3	4	

2	

1	

3	4	

2	 1	

3	

2	

1	 2	

€ 

α(G) = −2

€ 

α(G) = 0

€ 

α(G) = −2

€ 

f1(x) = H(x2 −
1
2
)

f2(x) = H(x1 −
1
2
)

f1(x) = H (x2 + x1 + x4 −
3
2
)

f2 (x) = H (x1 + x2 + x3 −
3
2
)

f3(x) = H (x2 + x3 + x4 −
3
2
)

f4 (x) = H (x1 + x4 + x3 −
3
2
)

€ 

(x1,x2,x3,x4 ) = (1,0,1,0)↔ (0,1,0,1)

Two-cycle	

There	exists	a	strict	sub-graph	with		

€ 

α(G) ≥ 0

€ 

(1,0)↔ (0,1)
Two-cycle	
	

⇒	

α(G) = −4−1+ 2×5− 4 =1≥ 0 So	there	exists	a	two-cycle.	



	
	
	
	

€ 

Parallel	upda3ng	on	two	families	of	graphs	
Bipar3te	graphs	(k=0)	
with	n	loops	
	(diag	(W)=(1,…1))	

⇒	
			

If	G	is	a	forest)	then	n>m	 Only	fixed	points	

Complete	graphs	with	n	loops	
	
In	this	situa3on,	the	minimum	number	of	edges	to	remove	to	obtain	a	bipar3te	graph			

	
	
									
	

€ 

p = 2q(q −1)
p = 2q2

for		n=2q	
	
for		n=2q+1	
	
	

€ 

α(Kn ) < 0 	Complete	graphs	updated	in		
Parallel	converges	to	fixed	points	⇒	

€ 

α(G) = −2n + 2m

(with	loops)	



Fixed	points	 Two-Cycles	

3≤k≤4	 0≤k≤2	

1≤k≤4	 k=0	

0≤k≤4	

3≤k≤4	 0≤k≤2	

1≤k≤4	 k=0	

∅	

k=number		
of	loops	

n=4	

Parallel	Upda3ng	



Connected	
graphs	for	
n=5	with	5	
loops.		
	

€ 

α(G)
2

= −n +m − 2p

In	red	the	edges	to	be		
removed	for	a	maximum	
bipar3te	graphs	



(Each	vertex	has	a	loop)	

4	
	

1	 	2		

3	
G	 G’	

(delete	)	 α(G) = −5− 5+ 2x6− 4 = −2

f1(x) = H (x2 + x1 + x4 −
3
2
)

f2 (x) = H (x1 + x2 + x3 −
3
2
)

f3(x) = H (x2 + x3 + x4 −
3
2
)

f4 (x) = H (x1 + x4 + x3 −
3
2
)

(1,0,1,0)		 (0,1,1,0)	

Two-cycle	

α(G) = −5− 5+ 2x6− 4 = −2



Theorem-II:	ahractors	for	every	block-sequen3al	update.	

€ 

s = {I1,...,Ip}

€ 

k ∈{1,..., p}

Consider	the	block-sequen3al	scheme	

The	symmetrical	threshold	network				T=(W,	b,	s)	

Let		 the	graph	associated	to	the	k-th	block	
			

fixed	points	

€ 

G'⊆G(Ik )

€ 

α(G') < 0

€ 

α(G') ≥ 0

€ 

G(Ik )

€ 

k ∈{1,..., p}	and	

€ 

€ 

G'⊆G(Ik ) such	that	 ⇒	

⇒	

€ 

∀

€ 

∀

€ 

∃ cycles	



Corollary	

€ 

s = {I1,...,Ip}the	block-sequen3al	scheme				

Consider	an	undirected	graph	G=(V,E)	with	every	loop	and	the		
		

€ 

| Ik | ≤	3	

€ 

k ∈{1,..., p}

€ 

∀ ⇒	 Fixed	points	

Otherwise,	there	exists		graphs	and	threshold		
vectors		such	that	cycles	appear	

No	more	than	three	sites		at	each	block	



Par33on	size	=1	directly	from	the	fact	that	diag(W)≥0	

Par33on	size	=	2	

€ 

α(G) = −4

€ 

α(G) = −2

€ 

α(G) = −2

Par33on	size=	3	

Sketch	of	the	proof:	



1	

1’	

2	

2’	

3	 4	 5	 6	 7	 8	

3’	 4’	 5’	 6’	 7’	 8’	

2	

2’	

3	 4	

3’	 4’	 ’	 Local	majority	at		
				each	vertex	

€ 

f3(x) = H(x2 + x3' + x4 −
3
2
)

f3' (x) = H(x2' + x3 + x4' −
3
2
)

staircase	

Non-Polynomial	Cycles	



0	 1	0	 0	 0	 0	

1	 1	 1	 1	0	 1	

0	 1	0	 0	 1	 0	

1	 1	 1	 0	0	 1	

0	 0	0	 0	 1	 0	

1	 1	 1	 0	1	 1	

Local	Majority	

1	
0	

Travel	to		
The	right	

Updated		
ver3ces	

X	
X’	 =	



1	0	 0	 0	 0	 0	 0	 0	

0	1	 1	 1	 1	 1	 1	 1	

0	1	 1	 0	 0	 0	 0	 0	

1	0	 0	 1	 1	 1	 1	 1	

€ 

τ = {{1,1'},{n,n'},{n −1,(n −1)'},...{3,3'},{2,2'}}

X(0)	

X(1)	

Block-Sequen3al	upda3ng	

Cycle	of	period	T=n-1	



Union	of		the	first	l	prime	number’s	staircases	of	size	

€ 

p1 +1 = 3;p2 +1 = 4;p3 +1 = 6, p4 +1 = 8,...., pl +1

So		by	considering	the	global	par33on		
  

€ 

τ = τk
k=1

l

∪

The	period	of	the	network	is	

€ 

T ≥ pk
k=1

l

∏ = eΩ |V (G )| log|V (G )|( )

Same	arguments	can	be	done	for	the	transient	3me.	
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crystals spin model to a segregation index. This index
is equivalent to many segregation indexes used in social
sciences and o↵ers several advantages over them. Further-
more, they explored the statistical properties of many sets
of samples (random and non-random samples), as well as
the evolution of the system once it has reached the final
equilibrium.

The tolerance parameter of opposite individuals in a neigh-
borhood ✓ in the Schelling model used by Goles [5], and
Cortez [6] may be mapped to the preferences of the in-
dividuals of the Sakoda model. This fact can allow to
obtain a systematic classification of the final patterns of
the simulations as Goles et al [5] did; whith these facts, it
is possible to compare the results of both models.

The results reported by Goles [5] and Cortez [6] not only
represent examples of how tools of statistical mechanics
and exhaustive simulations o↵er but also aports impor-
tant results to get comprehension of this type of social
phenomena. This information allows to design social poli-
cies.

In this paper we present a qualitative and quantitative
study of the Sakoda’s model using statistical mechanics
techniques for one and two spatial dimensional lattices.
The aim of this work is to get a better grasp of this sim-
ple but general model using exhaustive simulation work.
We considered four rules of iteration based on the range
of the interaction and the range of the movement, that
is, short range interaction/short range movement, short
range interaction/long range movement, long range in-
teraction/short range movement, and long range interac-
tion/long range movement. As a sake of simplicity, we fo-
cus our analysis on the short range interaction/long range
movement because we want to compare explicitly the lo-
cal interactions phenomenology to those of Schelling social
segregation model.

The present paper is organized as follows: In Sec. II we
formulate the model proposed by Sakoda and we briefly
discuss the general properties; we also define the Potts-
like energy. In Sec. III we present the main results for
one and two spatial dimensional lattices. We based our
analysis in the relation between Potts-like energy and the
interfaces of groups of individuals. We analyze the results
for dynamics in one and two dimensional lattices. In Sec.
IV we conclude and we discuss the implications of our
model including future research. We also compare the
results obtained by Sakoda with the present work. Finally,
we discuss the similarities of our work with the Schelling
social segregation model.
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Figure 1: Scheme of the algorithm used by Sakoda.
(a) Two types of individuals represented by squares and
crosses are distributed randomly on the checkerboard.
The attitudes towards own groups and towards other
groups are given. (b) Each individual evaluates the poten-
tial fk over every empty space of its neighborhood accord-
ingly attitudes towards the two groups. (c) An individual
moves to an empty place which has a higher value of fk.
(d) The algorithm is run recursively.

2 The model

We present the model used by Sakoda. The simple rules
that Sakoda proposed for his model are summariezed in
Figure 1 and can be described as follows:

The lattice represents the field of social interactions.
There are two types of agents namely squares and crosses,
and each group is composed of 6 individuals living in the
lattice. The simulation starts with a random initial config-
uration. This produces a social structure in which groups
are indistinguishable. Each group of individuals is as-
signed with an attractive (+1), neutral (0) or repulsive
(-1) attitude toward its own group and other group.

All individuals make their own move in random order.
Each individual execute only one movement per cycle and
it can move only to a close empty place in the neighbor-
hood. If there is no place to move, the individual can move
to the second Moore neighborhood, etc. The preference of
an empty cell in which an individual moves is evaluated
by the following potential function:

2





Sakoda’s	antude	matrices	

(a) (b)

(c) (d)

Figure 2: Scheme of the algorithm we used inspired in
Sakoda Model. (a) The simulation starts with a random
configuration with a fraction �V of empty nodes (gray
nodes) and fraction �++�� of occupied nodes +1 (white)
and -1 (black) states respectively. (b) An individual moves
to empty nodes considering a long movement (all network)
or short movement (neighborhood) evaluating the interac-
tion fk considering short or long influence. In this partic-
ular example, the individual marked with red dot is con-
sidering long movement. (c) The individual moves to the
position with a higher value of fk. (d) This algorithm
is run recursively until there is not a big change in the
dynamics of the system.

fk =
X

j

�(xk, xj)v(rkj) (1)

Where �(xk, xj) is the valence described previously be-
tween individuals occuping the sites k and j, and #(rkj)
is a function that depends on the inverse pow of the eu-
clidean distance between them, rkj . The sum

P
j is per-

formed over all non empty spaces of the grid.

In the following subsection we shall describe our version
of the model inspired in the Sakoda work. Figure 2 sum-
marizes the steps of the algorithm described widely in the
following lines.

(a) (b)

Figure 3: Scheme of the neighbors studied in one and two
dimensional lattices. (a) The two closest neighbors of an
individual in one dimensional periodic lattice (|#| = 2).
(b) Moore neighborhood in the two dimensional periodic
lattice (|#| = 8)

2.1 The lattice

We consider one and two dimensional regular and peri-
odic lattices with N nodes. Each node k has the same
neighborhood that we denote #k. In the one dimensional
case, its nearest neighbors and for the two dimensional
we shall consider the Moore neighborhood (see Figure 3).
We define |#| the size of the neighborhood; for the one
dimensional case |#| = 2 and for the two dimensional case
|#| = 8.
We consider two types of individuals and a vacancy state,
in this context, each node k is associated with a state value
xk which may take the values �1, 0,+1. States ±1 denote
an occupancy by an individual (+ or �), while the state
0 denotes vacancy. When a node k is empty (xk = 0)
and only in this situation, an individual may occupy the
spot and re-assign its value with a + or a -. The initial
condition is a distribution of states with a fraction �V of
total nodes in the vacancy state 0. A fraction, 1� �V , is
occupied with nodes at states ±1, clearly �V +�++�� =
1, nameling �+ and ��the fractions of individuals in state
±1 respectively. As in the Sakoda paper [1], we study the
case of �+ = ��. Other distributions may be studied with
the same arguments and tools developed below.

2.2 The interaction matrix

Let us consider the S�matrix:

S=

✓ �(+1) •(�1)

�(+1) s11 s12

•(�1) s21 s22

◆

The entries s↵� (↵,� = 1, 2, the columns and the rows in-
dexes are related to the two interacting individuals) belong

3

-1,	0,	1		entries		

There	are	81	matrices.	By	diagonal	symmetries	
(changing	blacks	and	whites)	only	45	different.	
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set of all !-matricesmay be arranged in a 9×9matrix, namely,
M:

M

= (((((((
(

(−1 −1−1 −1) (−1 −1−1 0 ) ⋅ ⋅ ⋅ (−1 −11 1 )( 0 −1−1 −1) ( 0 −1−1 0 ) ⋅ ⋅ ⋅... ... d
...( 1 1−1 −1) ( 1 1−1 0) ⋅ ⋅ ⋅ (1 11 1)

)))))))
)

. (A.1)

The indexes of thematrixM!" will be labeled by - = .11+3.12+5, and / = .22 + 3.21 + 5. Nevertheless, Sakoda’s interaction
possesses symmetry under the transformation0 : (.11 .12.21 .22) 1→ (.22 .21.12 .11) , (A.2)

together with the exchange 3" → −3". This symmetry
transformation reduces the 81 possible cases to 45. It is
equivalent to take the lower or the upper triangular part of
theMmatrix including the diagonal.

The Sakoda matrices can be classified by the parameters:(51, 52, 53)= (.11 + .22, .12 + .21, .11 − .22 + 3 (.12 − .21)) . (A.3)

The reader may note that any kind of linear combination
among these allows classifying the 45 basic elements. How-
ever, our choice of the above parameters considers special
invariances under the 0-transformation. Indeed, 51 and 52
do not change under 0, while 53 changes its sign under this
transformation.

B. Proof of (4)

Consider the exchange of the sites 7 (occupied) and 8 (empty);
that is,3# = ±1 and3$ = 0.Therefore, the energy for the initial
configuration, 3 = {. . . ,3#, . . . ,3$ = 0, . . .}, reads9 [3] = −12 ∑" ̸=$,#;& ̸=$,#;"&<' (3",3&) − 12;##<' (3#,3#)− 12;$$<' (3$,3$) − 12;$#<' (3$,3#)− 12;#$<' (3#,3$) − 12 ∑& ̸=$,#;$&<' (3$, 3&)− 12 ∑& ̸=$,#;&$<' (3&,3$) − 12 ∑& ̸=#,$;#&<' (3#,3&)− 12 ∑& ̸=#,$;&#<' (3&,3#) .

(B.1)

We have split the terms with an index 8 and/or 7. Because
the terms ;$$<'(3$,3$) and ;##<'(3#,3#) vanish and imposing
the symmetry conditions, the initial energy is simplified to9 [3] = −12 ∑" ̸=$,#;& ̸=$,#;"&<' (3",3&) − ;$#<' (3$,3#)− ∑& ̸=$,#;$&<' (3$,3j) − ∑& ̸=#,$;#&<' (3#,3&) . (B.2)

Similarly the energy of the updated configuration 3( ={. . . ,3$ = 0, . . . ,3#, . . .} reads9 [3(] = −12 ∑" ̸=$,#;& ̸=$,#;"&<' (3",3&) − ;$#<' (3$,3#)− ∑& ̸=$,#;$&<' (3#,3j) − ∑& ̸=#,$;#&<' (3$,3&) . (B.3)

As before, all quantities involving <'(3$,3&) vanish.The first
term is identical in both expressions (B.2) and (B.3), because
those terms do not involve the sites 7 and 8. The resulting
energy difference becomesΔ9 = 9 [3(] − 9 [3] = ∑& ̸=$,# (;#& − ;$&) <' (3#,3&) , (B.4)

which is exactly (4) of the paper.

C. Remark on the Potts Energy (3)

The <-function equation (2) may be written as (we acknowl-
edge J. P. Nadal for this remark):<' (3!,3") = 14 [3! (3! + 1)⋅ (3" (3" + 1) .11 + 3" (3" − 1) .12) + 3! (3! − 1)⋅ (3" (3" + 1) .21 + 3" (3" − 1) .22)]= 14 [(51 − 52) 3!3" + (51 + 52) 32! 32" + (.11 − .22)⋅ (3! + 3") 3!3" + (.12 − .21) (3" − 3!) 3!3"] .

(C.1)

Notice that in the second equality the first three terms are
symmetric under the exchange - ↔ /, but the last one is not.
After (C.1), the energy equation (3) takes the form of a spin-1
Ising model [20]:= −18∑!," ;!" [(51 − 52) 3!3" + (51 + 52) 32! 32"+ (.11 − .22) (3! + 3") 3!3"] . (C.2)

Because this energy is a symmetric sum on indexes - and /,
the antisymmetric terms of (C.1) cancel out.
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run are shown. Some of the runs end quickly in a stable pattern, others continue to
change and do not stabilize. Comments are made to show the types of situations to
which one can apply the particular model.

Fig. I CROSSROADS . Attitudes of
Squares Crosses

Toward ^ e r
1
0

1
0

0 +
DD +
+ • +

D
4-

Cycle 0 Cycle I Cycle 2

• + + +
DD + + +
DDO

Cycle 3 Cycle 4

FIGURE 1 Crossroads (Squares: 1 to Own, 0 to Other; Crosses: 1 to Own, 0 to Other).

Cycle 6
End

The simplest situation is one in which one group is attracted by one's own group
and is neutral toward the other, and the other group does likewise. It is sometimes
said that a group, by sticking together, alienates itself from other groups. Minority
groups, for example, frequently are accused of being withdrawn and clannish, instead
of associating with members of the majority groups. Some will therefore predict that
this pattern of positive attraction to one's own group will result in a segregated
pattern, with the two groups widely separated on the board. In Figure 1 is shown a
typical sequence for this combination of attitudes.

Each group moves toward the center of the board, and in the process contacts
members of the other group. At the end the two groups disentangle themselves into
two separate groups, sitting side by side near the center of the board. This stable
state was reached in six cycles. To meet other members of one's group the movement
in general is from the periphery of the board to the center. The periphery of the board
represents a state of isolation. An analogy would be between widely scattered farms
in the countryside and crossroads where a few stores are located and people con-
gregate. In a hotel individual rooms would represent locations of social isolation,
while the lobby would represent the crossroads where people are likely to meet one
another. Mobility in the form of attraction to other members of one's own group is
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126 J. SAKODA

more likely to bring one in close contact with members of other groups. It is the
stay-at-home, unattracted by anything else, who is not likely to make new contacts.

Another simple situation is one in which members of both groups have neutral
attitudes towards their own group and negative attitudes toward the other. One might
suppose that movement away from each other will lead to isolation of each group in
opposing corners, forming segregated groups. With the jumping option this does
happen: without it, it generally did not happen. In Figure 2 is shown every other cycle
of a run. Initially, each group breaks up into weak clusters, as can be seen in Cycle 3,
but eventually after nine cycles a stable segregated pattern is reached.

Fig. 2 MUTUAL SUSPICION

Toward

Attitude of
Squares Crosses

0
-1

0
- 1

Cycle 0 Cycle I Cycle 3

Cycle 5 Cycle 7 Cycle 9
End

FIGURE2 Mutual Suspicion (Squares: 0 to Own, —1 to Others; Crosses: 0 to Own, —ltoOthers).

Initially, mutual suspicion creates fragmented and weakly clustered subgroups,
and cannot be counted upon to form strong in-groups. In a police state, for example,
there can be a tendency for people to be secretive and not communicate with members
of one's own group. The lack of solidarity within a group would make communication
between groups difficult also. The pattern is unstable until segregated groups are
formed.

When both positive attitudes toward one's own group and negative attitude toward
the opposing group are in effect, the typical pattern is withdrawal of both groups into
opposing corners (Figure 3). Initially, however, there is a tendency for both groups
to move toward the center in order to form in-groups and then as groups to move out
to opposing corners.

When one finds segregation, one can assume the existence of both a positive attitude
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THE CHECKERBOARD MODEL OF SOCIAL INTERACTION

Fig. 3 SEGREGATION . 1#1 . .
Att i tude of
Squores Crosses

127

Toward ™ f
I 1

- 1

Cycle 0 Cycle I Cycle 2

Cycle 3 Cycle 4 Cycle 6

FIGURE 3 Segregated Groups (Squares: 1 to Own, — 1 to Others, Crosses: 1 to Own, - 1 to Others).

toward one's group and a negative one toward the other group. Racial groups, for
example, seek residential areas where others of their kind are already living. At a
party of couples, frequently men and women get together in different rooms. This is
particularly true when the main activity is conversation. Men dislike the small talk
of women about babies and clothes, and prefer to discuss business matters, sports or
politics. Likewise, women are repelled by men's conversation, and seek other women.
The pattern would be different, of course, if men and. women were seeking sexual
stimulation.

While the end patterns for Mutual Suspicion and Segregation are quite similar,
the intermediate configurations are different. The greater cohesiveness within groups
and the initial closeness between groups in the segregation patterns would, it seems,
enhance communication between the two groups.

The social climber situation is essentially a pursuit situation, in which the Squares,
disliking one another, spread out and chase the Crosses, who form an in-group,
which attempts to elude the pursuers. In Figure 4 every third cycle from 0-15 is
shown. One might suppose that the Crosses would form a tightly-knit group in the
center and would be surrounded by the Squares. In order to avoid the pursuer, how-
ever, the Crosses seek refuge on the periphery of the board. When it is surrounded by
the Squares, it attempts to break away and usually does so to another part of the board,
and in the process breaks up into subgroups. The situation is unstable, since the
Squares again close in on the Crosses, and move to another part of the board is again
necessitated. Occasionally, the Squares manage to trap the Crosses in a corner.
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128 J. SAKODA

Fig. 4 SOCIAL CLIMBERS Attitude of
Squares Crosses

. -1
I

1
-1

Cycle 0 Cycle 3 Cycle 6

Cycle 9 Cycle 12 Cycle 15
FIGURE 4 Social Climber (Squares: —1 to Own, 1 to Other; Crosses: 1 to Own, —1 to Other).

There are a number of social analogies to this situation. The upper class needs to
move away from an area when it deteriorates and lower classes begin to move into it.
Such movement can occur a number of times until some means is found to keep the
lower classes away. Fashions follow a similar pattern. The fashion setters seek a new
design. As soon as the fashion spreads to the run-of-the-mill crowd, fashion needs
to be changed. The change is mandatory even if the trend is reversed from short
skirts to long ones, from big cars to small ones, etc. To escape pursuit it is frequently
necessary for the Crosses to split up. The more tightly a group sticks together the
easier it is for them to be surrounded by the pursuers or imitators. The isolated Cross
has the best chance of being left alone.

The social worker pattern is like the social climber situation with the roles of the
pursuer and pursued reversed. The Squares have positive attitudes toward both its
own group and others. The Crosses have negative attitudes toward both its own
groups and the Squares. The Crosses scatter throughout the periphery of the board
while the Squares group together and slowly pursue one or two Crosses around the
edge of the board. In Figure 5 every other cycle from Cycles 8 to 18 is shown. The
pursuit is inefficient because only a limited contact with one or two Crosses is possible
at any one point, and the movement around the board is extremely slow.

The situation resembles some social work situation in which a well-organized group
pursues unorganized individual delinquents who are scattered in the neighborhood.
It is also reminiscent of missionary work which involves an organized group in
pursuit of individual 'lost souls' who have little interest in having their souls saved.
An alternative is to encourage the organization of the pursued group under a leader,
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THE CHECKERBOARD MODEL OF SOCIAL INTERACTION

Fig. 5 SOCIAL WORKER Attitude toward
Squares Crosses

Toward ^

129

1
1

- 1
- 1

Cycle 8 Cycle 10 Cycle 12

+
DD
DDD +

. . . ,a, ,+,

•

+

- +
D +

D D
DDD

+-

Cycle 14 Cycle 16 Cycle 18

FIGURE 5 Social Worker (Squares: 1 to Own, 1 to Other; Crosses: —1 to Own, —1 to Other).

Fig. 6 BOY-GIRL Attitude of
Squares Crosses

Toward -1
1

-1
1

1 •+• •+• ' a
D a I

a +• • +

Cycle 3 Cycle 4 Cycle 5
End

FIGURE 6 Boy-Girl Situation (Squares: —I to Own, 1 to Other; Crosses: - 1 to Own, 1 to Other).
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THE CHECKERBOARD MODEL OF SOCIAL INTERACTION

Fig. 5 SOCIAL WORKER Attitude toward
Squares Crosses

Toward ^

129

1
1

- 1
- 1

Cycle 8 Cycle 10 Cycle 12

+
DD
DDD +

. . . ,a, ,+,

•

+

- +
D +

D D
DDD

+-

Cycle 14 Cycle 16 Cycle 18

FIGURE 5 Social Worker (Squares: 1 to Own, 1 to Other; Crosses: —1 to Own, —1 to Other).

Fig. 6 BOY-GIRL Attitude of
Squares Crosses

Toward -1
1

-1
1

1 •+• •+• ' a
D a I

a +• • +

Cycle 3 Cycle 4 Cycle 5
End

FIGURE 6 Boy-Girl Situation (Squares: —I to Own, 1 to Other; Crosses: - 1 to Own, 1 to Other).
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to the set {�1, 0,+1}. An entry with value +1 indicates
an attraction attitude from members to one class to the
other. An entry at value �1 indicates repulsion towards
the classes and the value 0 indicates neutrality. Based on
this, we obtain 81 possible matrices. However, by symme-
try, all di↵erent cases are reduced only to 45.

2.3 The interaction among individuals

We define a function that evaluate mathematically the
preference of one individual over a particular place in the
lattice based on the spatial separation rik and the attitude
contributions towards other individuals:

fk =
NX

j=1

�(xk, xj)v(rkj) (2)

Following Sakoda model, we propose a potential-like that
considers the attitudes towards other individuals. Accord-
ing to this, suppose that an individual at the node k has
the value xk and an attitude s↵� towards the state xj

(located at the node j), then we define the interaction
function:

�(xk, xj) =

⇢
s↵� for xk, xj 6= 0
0 otherwise

(3)

This function provides the entry of the S-matrix that con-
tains the information about the attitude from one group
towards the other. It is important to point out that the
S�matrix is not necessary symetric, i.e., one class may feel
attraction towards the other, but this may not be true in
the reciprocal case. To consider the spacial influence that
an individual feels, we assume as a general rule that the
shorter is the distance the stronger is the influence. We de-
fine rkj the euclidean distance between the nodes k and j.
We studied two ranges of influence that at node k may feel:
the short and the long range influence. The short range
influence only considers the contributions of individuals
that belong to the neighborhood of k. It is equivalent to
write that the individual at node k feels the influence of
every individual at node j 2 #k and supposes a distance
rkj = 1 for neighbor and 0 at long distance. The long
range influence considers the contributions of every indi-
viual in the lattice. We define a function v(rkj) to describe
the influence range. The short range case is written as:

v(rkj) =

⇢
1 i↵ j 2 #k

0 otherwise
(4)

and the long range influence, as in Sakoda paper, is written
as:

v(rkj) =
1

r

2
kj

(5)

2.4 The motion of the individuals

An individual at a node k moves up towards an empty
node j if fk  fj , where fj is the potential value of the
empty node j would be occupied by the individual xk. An
individual moves influenced by its preferences. According,
we define two ranges of motion: the long range and the
short range movement. In the short range movement, an
individual at node k evaluates the potential fj at every
node in the neighbor (j 2 #k) such that, xj = 0 and xj

moves to the node with a higher value of fj . In case of
degenerancy, i.e., if there are j and j

0 nodes such that
fj = fj0 , one of them is selected randomly. In the long
range case, the individual may move to any empty node
j everywhere in the lattice, evaluating fj and choosing
the place that produces the best value of the potential-
like function. If fk = fj the individual goes to the node
j. The previous algorithm is run until an attractor is
observed, that means, until there is not a big change in the
dynamics after a long time of evolution of the simulation.

2.5 The energy

As already said, the quantity fk allows an individual k to
evaluate their preferences in space. To quantify the evolu-
tion of a particular configuration, we propose an energy-
like function based on the interaction fk. Following Goles
et al. [5] we generalize the Ising-like energy function ob-
tained in the case of the Schelling’s segregation model via
Potts-like energy [8]. Thus, the energy E of a particular
configuration of the network x reads:

E[x] = �1

2

X

k

fk = �1

2

X

k,j

�(xk, xj)v(rkj) (6)

We shall prove that, if the interaction is symmetric and
attractive among memeber of the same group, then the
energy in eq. 6 is a decreasing function after a movement.
Proof. Suppose that � is a symmetric function, i.e.,
�(↵,�) = �(�,↵) and �(↵,↵) � 0. In general, we consider
that S is a symmetric matrix with non-negative diagnonal.
With previous hypothesis, the operator E[x] is a energy
(a decreasing operator).
In fact, consider the exchange sites l (occupied) and q

(empty), i.e., xl = ±1 and xq = 0, such that the local
interaction when individual xl is placed at the empty site
q is bigger that the interaction at the site l, i.e:
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Figure 5: Phase diagram for di↵erent values of �V and � considering Short influence potential/Long range movement
in a one dimensional lattice. This attractors are the results of simulations considering 128 one dimensional lattice.
The time goes from top to bottom; the red line divides between the first 200 evolution steps and the final 200 evolution
steps. We consider preiodic boudary conditions.
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Figure 9: Plot of the energy E of the 45 attractors classified by � for di↵erent values of vaccancy fraction �V for one
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Figure 1: (Color online) snapshots of the few basic social structures: (a) ! = (0, 1, 1, 0), (b) ! = (1, 1,−1,−1), (c) ! = (1, 1,−1, 1), and (d)! = (1,−1,−1, 1) for various density of vacancies: (I) #! = 0.01, (II) #! = 0.5, and (III) #! = 0.98.The simulations consider the case of short
range of influence and long range of movement and were run in a lattice of$ = 128 × 128 sites and for 2 × 105 steps.
elsewhere.Then, the individual may look forward the highest
expectation at any empty node in the lattice. We discuss the
cases of short and long range interactions/mobility at the end
of the paper and in Appendix F.

The numerical simulations for all 45 possible !-matrices
were run in a two-dimensional periodic lattice of$ = 128 ×128.The evolution usually runs for 2 × 105 time steps, which
happens to be sufficient to reach equilibrium or a steady state.
We have also simulated the case of $ = 64 × 64 without
significant dependence on the system size.

The initial condition consists of a random distribution
of states characterized by a fraction #! of vacancy states.
For all of our simulations, we have checked the robustness
of the social structures considering different random initial
configurations. We focus our attention on five levels (#! =0.01, 0.25, 0.5, 0.75 & 0.98) of different initial concentration
of vacancies as a good representative sample (see Section 5.2).
Other initial distributions may be studied using the same
frame and tools developed in the present paper.

Figure 1 summarizes some social structures resulting
from the afore-mentioned algorithm for four characteristic !-
matrices and for three different values of the vacancy fraction,#!. Over all the manuscript, the light gray cells (red cells
online) represent individuals at the state +1 and the dark gray
cells (blue cells online) represent −1 individuals, while the
white ones represent the empty spaces, 0.

From the simulations, we notice the similarities of our
results with the physics of surface tension [26]. Indeed all
possible situations among the three phases follow after an
interface equilibria argument (something that will be clear in
Section 3). For instance, Figure 1(a) shows a situation of amis-
cible +1 and −1 phases, but both are nonmiscible with respect
to white. Similarly, Figure 1(b) presents a miscible phase
between +1 and 0 (white), but both are nonmiscible with−1 phase. Figures 1(c) and 1(d) present cases with the three
nonmiscible phases (+1,−1, 0), but the interface equilibria are
different. While in Figure 1(c) there are interfaces between+1/−1, +1/0, and −1/0; in the case of Figure 1(d), +1/−1
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Figure 7: Snapshots for different interaction and movement (rest) rules for the same cases as in Figure 1. (a) ! = (0, 1, 1, 0), (b) ! =(1, 1,−1,−1), (c) ! = (1, 1,−1, 1), and (d) ! = (1,−1,−1, 1).The first line (I) corresponds to the case of short range interaction and short range
movement.The second row (II) corresponds to long range interaction/short range movement, and, finally the third line (III) corresponds to
the case of long range interaction and long range movement. Simulations were run in a# = 128 × 128 lattice with %! = 0.5 and for 2 × 105
steps for (I) and (II) and 5 × 104 steps for (III).
pattern depends on the range of interaction and/or the scale
of the movement. In those attractors that exhibit patterns of
aggregation or segregation, long movements produce larger
clusters of individuals than short movements. The range of
interaction also plays a role on the scale of the patterns in the
social structures.The largest pattern arises for the case of long
range movement long range interaction (Figure 7(III)); the
next intermediate size would be for the case of short range
interaction long range movement (Figure 1(II)). For the cases
of short rangemovement, the pattern’s scale is usually smaller.
Figure 7(I) shows that the case of short range interaction-
short range movement displays the smallest pattern’s size.
Finally, Figure 7(II) corresponds to the case of long range
interaction-short range movement with a slightly larger scale

pattern. In this sense, agglomeration sizes are produced
by the available information that individuals have access:
individuals may explore more empty sizes if they consider
a long range movement; on the contrary, short movements
allow individuals to explore just few options of empty sizes;
hence small clusters are expected.

Appendix

A. The Social Interaction Symmetries

Because &",#may take three different values (&",# = −1, 0, +1),
the total amount of different !–matrices is 81. Therefore the
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of short rangemovement, the pattern’s scale is usually smaller.
Figure 7(I) shows that the case of short range interaction-
short range movement displays the smallest pattern’s size.
Finally, Figure 7(II) corresponds to the case of long range
interaction-short range movement with a slightly larger scale

pattern. In this sense, agglomeration sizes are produced
by the available information that individuals have access:
individuals may explore more empty sizes if they consider
a long range movement; on the contrary, short movements
allow individuals to explore just few options of empty sizes;
hence small clusters are expected.

Appendix

A. The Social Interaction Symmetries

Because &",#may take three different values (&",# = −1, 0, +1),
the total amount of different !–matrices is 81. Therefore the
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The Model of  Segregation by Shelling 

!   Lattice one or two dimensional 
with periodic conditions 

!   State	

	

!   Neighborhood		Moore	
(green	and	red	arrows)	and	
von	Neumann	(red	arrows)	

!   Tolerance	threshold	

Thomas	C.	Schelling	(1969	-	1972)	

€ 

θ ∈{1,....V }



Happiness	threshold	

An	individual	is	unhappy	if	there	are	more	
than					individuals	on	the	other	state	in	its	
neighborhood	

e g . 	 F o r	 t h e	 M o o r e ’ s		
neighborhood	and				
then	:		



The update rule 

At	 each	 step,	 one	 lists	 the	 unhappy	
individuals	 of	 both	 species,	 and	 then	
randomly	 (for	 instance)	 one	 exchanges	
two	individuals	of	opposite	value.	





256	x	256	128	x	128	32	x	32	 64	x	64	 512	x	512	

Length	scale	for		



Phase diagram 
for Moore’s neighborhood 



Quantitative behavior 

:the energy decreases 

€ 

θ ≥ 5

In general, if V is the neighborhood, the energy decreases 
If and only if  

€ 

θ >
V
2



E vs time 



Geometrical interpretation 

It is easy to see by a transformation of the energy that 
Minimize it, is equivalent to minimize the perimeter of 
The clusters …… so  the dynamics try to do that !! 

Others phase diagrams with circle-neighborhoods  
with different radios    (Nicolas Goles-Domic Simulations): 
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Regulatory	Boolean	networks	



			The	dynamics	may	change	a	lot	for	different	updates.	
	
	Cycles	may	appear	or	dissapear.	
	
Given	a	regula3on	network	what	is	the	“right”	way	to	update	
it?.		
	
Condi3ons	such	that	there	exists	only	fixed	points.	
	
Condi3on	for	the	robustness	of	the	network	(roughly	speaking,	
same	behavior	for	different	updates).	
	



Since	there	are	an	exponen3al	number	of	updates	
To	study	all	them	implies	a	huge	amount	of	computa3on	
So	it	is	important	to	determine	tools	in	order	to	diminish	

	the	compu3ng	3me	…..	
	

	We	will	present	here	dynamical	equivalence	classes		
and	the	no3on	of	alliances	

Previous	no3ons	where	defined	to	study	yeast’s	regula3on	networks		

Below	we	will	always	consider	threshold	interac3ons	

€ 

x'i = 0⇔ wij x j −θ i
j=1

n

∑ ≤ 0

1							otherwise	



We	consider	threshold	interac3ons	

€ 

x'i = 0⇔ wij x j −θ i
j=1

n

∑ ≤ 0

1							otherwise	



€ 

(F,s1)

€ 

(F,s2)and	

Equivalent	classes:	given	a	regulatory	network	(F,G)	and	the	updates		
modes							and								we	obtain	two		dynamics:	

€ 

s1

€ 

s2

		They	are	equivalent	if	and	only	if	its	phase	space	is	the	same.	

There	are		“good”	algorithms	to	determine	
equivalent	classes	for	reasonable	size	regulatory	networks		
(	say	n	no	more	than	15		and	no	to	much	interconnec3ons.	

Aracena,	J.,	E.G,	E.,	Moreira,	A.,	&	Salinas,	L.	(2009).		
On	the	robustness	of	update	schedules	in	Boolean	networks.	Biosystems,	97,	1–8.		
	Montalva,	M.	(2011).	Feedback	set	problems	and	dynamical	behavior	in	regulatory	networks.	PhD,		
Universidad	de	Concepción,	Concepción,	Chile.	



Alliances:	Given	a	regulatory	network	(F,G)	

€ 

aik = H( wiki j
j=1

p

∑ ai j + wik j
j∉{i1 ,...,ip }
∑ x j −θ ik

)

€ 

k ∈{1,..., p}

€ 

x ∈{0,1}n− p

€ 

(ai1 ,...,aip )∈{0,1}
pWe	say	that	a	subconfigura3on	 Is	an	alliance	if	and	only	if	

An	alliance	are	a	kind	of	“local”	fixed	point	but	stronger….	

It	is	invariant	under	updates	changes	



Alliance	A	

X	

Alliance	A	

X’	

A�er	update	



EXAMPLE1	



EXAMPLE	2:	reduc3on	of	the	network	from	an	alliance	



	Fission	yeast	
	cell-cycle	model		

(Yeast1)	

Model	proposed	in	Davidich,	
Bornholdt		(2008)	PloSONE)	



Threshold	func3ons	and	interac3on	matrix	for	Yeast1	



	Fixed	points	and	the		
limit	cycle	(synchronous	update)	





0	

1	 0	

0	

1	0	

€ 

€ 

Y1 = (Cdc2 /cdc13,Ste9,Cdc2 /Cdc13*) = (0,1,0)
Y2 = (Cdc2 /cdc13,Rum1,Cdc2 /Cdc13*) = (0,1,0)

Alliances	

€ 

Y1

€ 

Y2



For	any	ini3al	vector	such	that	it	contains	one	of	the	two	
previous	alliances	then	for	any	update	mode	the	dynamics	
converges	to	fixed	points		
It	remains	to	study	what	happens	when	in	ini3al	condi3on		
we	do	not	have	(as	a	sub-configura3on)	an	alliance.	

Cdc2/Cdc13				 Z										Cdc2/Cdc13*	

Cdc2/Cdc13				 Z										Cdc2/Cdc13*	

Cdc2/Cdc13				 Z										Cdc2/Cdc13*	

Cdc2/Cdc13				 Z										Cdc2/Cdc13*	

Cdc2/Cdc13				 Z										Cdc2/Cdc13*	

Cdc2/Cdc13				 Z										Cdc2/Cdc13*	

Cdc2/Cdc13				 Z										Cdc2/Cdc13*	

Cdc2/Cdc13				 Z										Cdc2/Cdc13*	

Cdc2/Cdc13				 Z										Cdc2/Cdc13*	=	

>	 <	

<	 >	

<	 <	

>	>	

<	=	

>	=	

>	 =	

<	 =	

=	

€ 

P1

€ 

P2

€ 

P3

€ 

P4

€ 

P5

€ 

P6

€ 

P7

€ 

P8

€ 

P9

€ 

Sn = P1(z)∪ P2(z)∪ P3(z)∪ P4 (z)∪ P5(z)∪ P6(z)∪ P7(z)∪ P8(z)∪ P9(z)

€ 

z∈{Ste9,Rum1}





The	total	number	of	updates	is	545835		

Bby	algoritmhs		and	the	no3on	of	alliances,	we	reduce	
	to	study	only	15350	diffferent	equivalent	classes	

So	there	exists		5513	classes	with	a	limit	
cycle	(period	between	2	and	5)	









Cell	cycle	of	the	budding	
yeast	

Li,	Long,	Lu,	Tang,(2004)	The	yeast	cell-cycle	
	network	is	robustly	designed,		PNAS,101,	

4781-4786	



Matrix	and	transi3on	vector	of	the	yeast2	network	



0	

0	

0	

0	 0	

0	

0	 Alliance	elements	



For	any	update		yeast2	admits	only	fixed	points	

To	prove	that	it’s	enough	to	study	two	cases:	MBF=	0	or	MBF=1	

For	MBF=0,		any	ini3al	configura3on	converges	to	the	
alliance.	A�er	that,	the	sub-network	to	analyze	is	a	tree,		
so	for	any	ini3al	vector	and	any	update	it	converges	to	
fixed	points.	
	 Tree	for	MBF=0	

For	MBF	=1	by	studying	numerically	the	equivalent	
classes	for	a	reduced	network,	we	determine	that	every	
dynamics	admits	only	fixed	points.		

					Reduced	network	for	MBF=1	







		Gracias	!!!			


