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Based on joint works with  



P. longicornis ants 

Collective transport by Crazy ants



Feinerman lab

Method: 
Scent mark detection



1. Individuals lay local trails

A new type of ant trail

2. Group follows them, but not religiously

What is it good for?

100 meters

The known trail -  
Very long and steady



To nest     



You need to drive a car

You get the map for walking



Navigating with unreliable roadsigns

Imagine driving in a foreign country after a hurricane 
Most road signs are intact but some have been turned

How can you still get to your destination fast?



The Noisy Advice model

Each node has an advice pointer, which is correct         with probability p.  
Otherwise, w.p. q=1-p it points at an arbitrary direction  

Advice per node is fixed!
Very different from advice that can be resampled at any query (allows for busting)  

Very different from worst case placement of wrong advice  

[Feige et al. SICOMP’94] [Ben-Or and Hassidim FOCS’08]
[Emamjomeh-Zadeh et al. STOC’16]  [Karp and Kleinberg  SODA’07]

[Hanusse et al. PODC’10, TCS’08]

How can we reach the nest fast?

To Nest



Random Listening (RL)

Random Listening:  
• follow advice pointers with a fixed probability    , otherwise: 
• do a random walk

“Random Walks in Random Environments (RWRE)”

To Nest



Time to pass a trap is exponential in its size

Theorem: If p>0 then any listening probability 0<    <1-p   
                allows for RL to reach distance d in O(d) time

Example: Line graph

But traps are exponentially rare



Predictions

x 

most advice is correct 
time to pass obstacle of size x is O(x)

x 

all advice is wrong 
time to pass obstacle of size x is exp(x)



Predictions

Consistent with step length of 10cm and probability of listening     = 0.8

Experimental validations 
(performances of living ants)

E. Fonio 
O. Feinerman 

x 

most advice is correct 
time to pass obstacle of size x is O(x)

x 

all advice is wrong 
time to pass obstacle of size x is exp(x)



RL in grids

positive speed

Situation is “in between” a line and a refreshed advice

Li+1 Li Li-1

Adapting results from RWRE [Snitzman, 2002], we prove:

Theorem: 
In grids and line graph if q is small enough then there exists a  
range of listening probabilities to allows for positive speed



There exists a constant c and a listening probability, s.t.  
for any graph, RL achieves linear hitting time if  
mistake  q < c /    at every node.  

Conjecture: 



eLife 2016

“Le Monde” Jan. 2017



Navigating on Noisy Trees

treasure

d

L. Boczkowski, A. Korman, Y. Rodeh

To be submitted



There exists a constant c’, s.t. any RL achieves  
exponential hitting time (in d) if mistake q > c’ /   .  

• There exists a constant c and a listening probability, s.t.  
for any tree, RL achieves linear hitting time O(d) if  
mistake q  < c /    at every node. 

Theorem

Conjecture holds for Trees
 1 /    is a threshold for the noise q in order for  

random listening strategies to be efficient

• Consider the complete    -regular tree. 



There exists a constant c’, s.t. any RL achieves  
exponential hitting time (in d) if mistake q > c’ /   .  

• There exists a constant c and a listening probability, s.t.  
for any tree, RL achieves linear hitting time O(d) if  
mistake q  < c /    at every node. 

Theorem

Conjecture holds for Trees
 1 /    is a threshold for the noise q in order for  

random listening strategies to be efficient

• Consider the complete    -regular tree. 

What about other algorithms?



0 1

Noise regimes

RL

1/

?



0 1

all algorithms are exponentialRL

1/ 1/

1/     is a lower bound on noise 



Proof sketch

 Assume: 

(1) full advice is given to alg, and 

(2) treasure is chosen u.a.r at a leaf

Consider the complete   -ary tree 

Claim:

Best algorithm: counts # of pointers (in the whole tree)  
pointing at each leaf and checks the leaves in order

Given the claim, time is > the expected number of leaves that “beat” the treasure

treasure

v

w
+1



Expected number of competitors

There are roughly         leaves whose distance from t is 2D  

Therefore, the expected #leaves that beat t is at least:

u
treasure

D

Prob that a given leaf is “better looking” than t is small, but there are many leaves!

Prob that u is “better” than t is at least



0 1

Noise regimes

all algorithms are exponentialRL ?

1/ 1/



0 1

all algorithms are exponentialRL ?

1/ 1/

t

d

q

Time lower bound of    (dq  ) =    (d    )

Noise regimes



A simple greedy strategy that fails
Walk to the currently most promising node -  

the one with most pointers pointing to it



A simple greedy strategy that fails
Walk to the currently most promising node -  

the one with most pointers pointing to it

Consider the complete    -ary tree 
  with an extra child to r 

There are              leaves u. For any of them, prob that r points to u,  
and nobody on the path to u points at r is >

So the expected number of nodes visited before the treasure is at least roughly:

t

D

u

r



   Theorem: if q<        then there exists a walking
algorithm that runs in optimal O(d    ) time

Let us make our life easier, and assume: 
  1. tree structure is known to the algorithm  
  2. treasure is restricted to leaves 
  3. t is chosen at random according to a known dist

Layer 1

Layer 1

(u)

A prior distribution 
Layer 1

1/

Intuition for the construction: Based on a Bayesian approach 

Algorithm: go to the node on the border of what you saw that  
maximizes the prob that the treasure is a descendant of that node



So what would be the good choice of    ?     
Layer 1

The most natural choice is the uniform over all leaves  
or over all nodes.  

This works for compete    -ary trees, but fails for general trees :-(

We want to choose     s.t. the corresponding  
algorithm will be good against an adversary 

Layer 1



We define θ according to a random walking down process:  

For a leaf v, define θ(v) as the probability that this process eventually 
reaches v. Our extension of θ can be interpreted as θ(v) being the 
probability that this process passes through v. Formally,

Starting at the root, walk down to a child u.a.r.  
until reaching a leaf

Choosing      
Layer 1



We define θ according to a random walking down process:  

For a leaf v, define θ(v) as the probability that this process eventually 
reaches v. Our extension of θ can be interpreted as θ(v) being the 
probability that this process passes through v. Formally,

Starting at the root, walk down to a child u.a.r.  
until reaching a leaf

Choosing      
Layer 1

This works! it gives an algorithm that runs in O(d    ) time



The optimal walking algorithm

Consider all advice discovered so far, and go to a  
node on the border with highest score

Note, the algorithm does not need any a priori knowledge of the structure of the tree!



Query Algorithms

What about query algorithms?

0 1

all algorithms are exponential 
 (both walking and query)

RL

1/ 1/

optimal walking algorithm 
running in O(d   ) time



O(log n) query algorithm for the line

In the case of refreshable noise, there exists an O(log n) query algorithm 
[Feige et al. SICOMP 1994]

It is easy to immolate any protocol on the line by simply querying one of  
the neighbors of endnotes of the corresponding visited subpath

?

?



Theorem: 
               for complete ∆-ary trees

   Lower Bound of Ω(  ∆·log  n)

0
1

all algorithms are exponential 
 (both walking and query)

RL

1/ 1/

optimal walking algorithm 
running in O(d    ) time

     log  n) queriesΩ(lower bound:

Walking

Query



Query algorithms

Theorem: There is a query algorithm with # of queries 
                  O(    · log2 n) on expectation, when q < 1/ 

Basic strategy
• Do a separator decomposition.

• For each junction v of the sep tree, apply the walking alg on the subtree 
Tv of depth O(log n), until finding a leaf w of Tv, for which 80% of the 
arrows point to it. W.h.p., this will happen by time O(    log n). 

• Once w is point, the neighbor of v in the sep tree that contains w in its  
    tree is w.h.p the correct separator to continue.

• W.h.p. this finds the treasure within O(     log2 n). If the treasure is not  
    found by this time, do an exhaustive search.

Theorem: There is a query algorithm with # of queries 
                  O(    · log n · loglog n) for   -regular trees



Summary

A new kind of ant trail

A new kind of model for search in  
unreliable conditions

RL - A memoryless strategy that is good for  
      grids and trees as long as q<c/∆  

Conjecture: RL is good for any graph as long as q<c/∆  



0
1

all algorithms are exponential 
 (both walking and query)

RL

1/ 1/

optimal walking algorithm 
running in O(d    ) time

Summary - on noisy trees

1. query algorithm 
running in O(    log2 n) time

2. query algorithm 
running in O(    log n loglog n) time  
for   -regular trees

     log  n) queriesΩ(lower bound:

Walking

Query

upper bounds



Open problems

• Solve the random listening conjecture for general graphs 

• Find optimal algorithms for other graph families (e.g. expanders?)



Merci!


