Algorithmes modérément exponentiels pour l'étiquetage L(2,1)

Mathieu Liedloff

Université d'Orléans - LIFO

Journées nationales du GDR IM mars 2017

Many problems need super-polynomial time to be solved, due to :

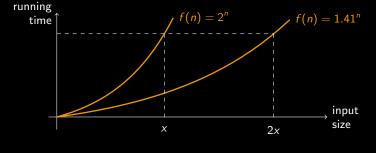
- NP-hardness (the question P = NP is still open)
- nature of the problem (enumerating a large number of objects)

Kurt Gödel to **John von Neumann** (1956) :

« It would be interesting to know [...] how strongly in general the number of steps in finite combinatorial problems can be reduced with respect to simple exhaustive search. »

For some problems (e.g. SAT), the best known algorithms are just trivial enumeration, but for many others we can do better.

Focus on NP-hard problems and solve it provably faster than by exhaustive search.



Under the scope of moderately exponential-time algorithms, we deal with the following types of problems:

> decision counting optimization enumeration

In this talk we give **moderately exponential-time algorithms** for a frequency assignment problem :

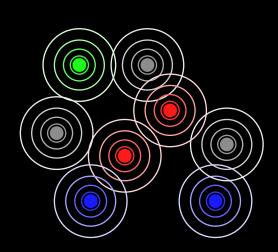
- broadcast network
- assign frequencie to transmitters
- avoid undesired interference

In this talk we give **moderately exponential-time algorithms** for a frequency assignment problem :

- broadcast network
- assign frequencies to transmitters
- avoid undesired interference

In this talk we give moderately exponential-time algorithms for a frequency assignment problem :

- broadcast network
- assign frequencies to transmitters
- avoid undesired interference



minimum L(2,1)-lab span

Outline of the talk

- Introduction
- Definition of L(2,1)-labelings and known results
- **Branching algorithm for span 4 labelings**
- A fast algorithm to compute the minimum span
- **Conclusion**

An algorithm to compute the minimim span

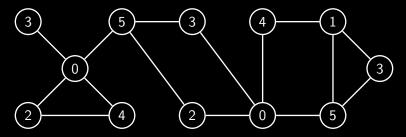
- 1 Introduction
- **2** Definition of L(2,1)-labelings and known results
- (3) Branching algorithm for span 4 labelings
- (4) A fast algorithm to compute the minimum span
- Conclusion

L(2,1)-LABELING

Input: A graph G = (V, E).

Question : Compute a function ℓ of minimum span k $\ell: V \to \{0,\ldots,k\}$ s.t.

- u and v adjacent $\Rightarrow |\ell(u) \ell(v)| \geq 2$
- u and v at distance two $\Rightarrow |\ell(u) \ell(v)| \ge 1$



 \rightarrow Model introduced by Roberts, 1988

Many complexity results:

Theorem

[Griggs and Yeh, 1992] [Fiala, Kloks, Kratochvíl, 2001]

Determining the minimum span $\lambda(G)$ of a graph G is NP-hard.

Deciding whether $\lambda(G) \leq k$ remains NP-c for every fixed $k \geq 4$.

Separates treewidth 1 and 2 by P / NP-completeness dichotomy :

Theorem

[Chang, Kuo 1996] [Fiala, Golovach, Kratochvíl, 2005]

L(2,1)-labeling problem is polynomial time solvable on trees, but NP-complete for series-parallel graphs (k is part of the input).

Much more difficult than ordinary coloring :

Theorem

[Fiala, Golovach, Kratochvíl, 2005] [Janczewski, Kosowski, Małafiejski, 2009]

NP-completeness for series-parallel graphs (k is part of the input).

Deciding whether $\lambda \leq 4$ is NP-complete for planar graphs.

deracely exponential-time algorithms

• decide span 4 : $\mathcal{O}(1.3006^n)$ (poly-space) [ΗΚΚΚ<u>L</u>,2011]

L(2,1)-lab of span 4

- count span 4 : $\mathcal{O}(1.1269^n)$ (exp-space) [CGKLP,2013]
- enumerate span 5 in cubic graphs : $\mathcal{O}(1.7990^n)$ [CGKLP,2013]

Computing the minimum span k:

- polynomial space :
 - $\mathcal{O}^*((k-2.5)^n)$
 - $\mathcal{O}(7.50^n)$
 - $\mathcal{O}(3.4642^n)$
- exponential space :
 - $\circ \mathcal{O}^*(4^n)$
 - $\mathcal{O}^*(15^{n/2}) = \mathcal{O}(3.88^n)$
 - $\circ \mathcal{O}^*(3^n)$
 - $\mathcal{O}^*(2.6488^n)$

Dunana aasal

[HKKK<u>L</u>,2011]

[JSK<u>L</u>R,2012] [Kowalik, Socala,2014]

[Kráľ,2006] [HKKKL,2011]

[Cygan, Kowalik,2011]

[JSK<u>L</u>RR,2013]

An algorithm to compute the minimim span

- 1 Introduction
- **2** Definition of L(2,1)-labelings and known results
- 3 Branching algorithm for span 4 labelings
- 4 A fast algorithm to compute the minimum span
- **5** Conclusion

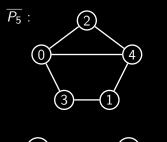
A convenient way to study L(2,1)-labelings is via locally injective homomorphisms :

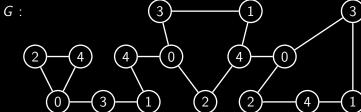
homomorphism: A mapping $f: V(G) \to V(H)$ is a homomorphism from G to H if $f(u)f(v) \in E(H)$ for every edge $uv \in E(G)$.

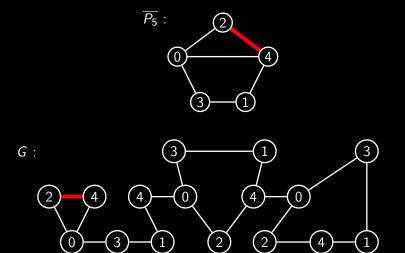
locally injective homomorphism (LIH): A homomorphism $f: G \to H$ is locally injective if for every vertex $u \in V(G)$ its neighborhood is mapped injectively into the neighborhood of f(u) in H, i.e., every two vertices having a common neighbor in G are mapped onto disctinct vertices in H.

Fiala and Kratochvíl, 2002:

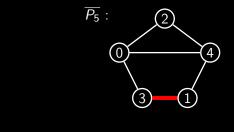
Theorem. L(2,1)-labelings of span k are locally injective homomorphisms into the complement of the path of length k.

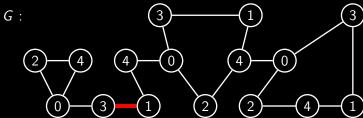




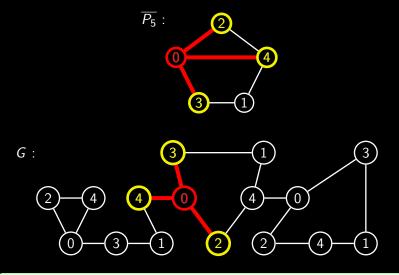


 $uv \in E(G) \Rightarrow f(u)f(v) \in E(H)$

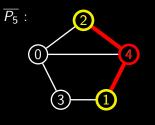


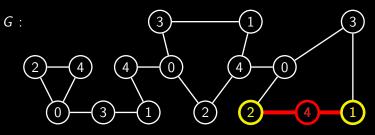


 $uv \in E(G) \Rightarrow f(u)f(v) \in E(H)$

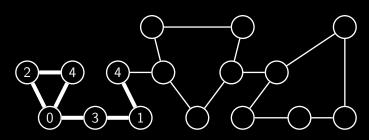


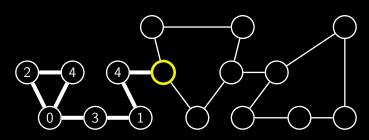
 $u \in V(G) \Rightarrow N(u)$ is mapped injectively on N(f(u)) in H

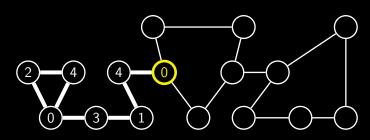


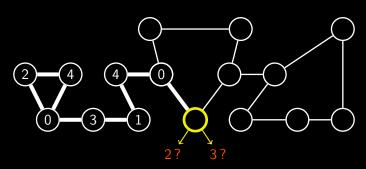


 $u \in V(G) \Rightarrow N(u)$ is mapped injectively on N(f(u)) in H

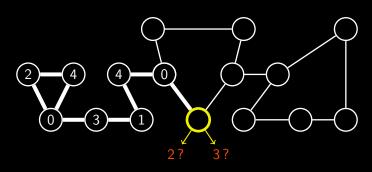








L(2,1)-labelings of span 4 can trivially be decided in $\mathcal{O}(2^n)$ time.



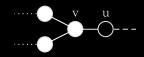
Something faster?

0 - 4 3 - 1

Description of the rules of the algorithm :

Rule 1 - Forced Extensions

- ullet if u is unlabeled and its labeled neighbor v has two labeled neighbors
- \Rightarrow label of u is forced

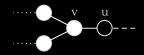


- if u is unlabeled and its labeled neighbor v has label 1, 2 or 3
- \Rightarrow label of u is forced

Description of the rules of the algorithm:

Rule 1 - Forced Extensions

- if u is unlabeled and its labeled neighbor v has two labeled neighbors
- \Rightarrow label of u is forced



- if u is unlabeled and its labeled neighbor v has label 1, 2 or 3
- \Rightarrow label of u is forced



- An algorithm for L(2,1)-labelings of span 4 (1/5)
 - ullet if u is unlabeled, d(u)=3 and u has a labeled neighbor v
 - \Rightarrow label of u is forced

- if u is unlabeled, d(u) = 2 and u has a labeled neighbor v and a (possibly unlabeled) neighbor of degree 3
- \rightarrow label of u is forced

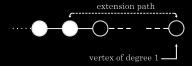
- An algorithm for L(2, 1)-labelings of span 4 (1/5)
 - if u is unlabeled, d(u) = 3 and u has a labeled neighbor v
 - \Rightarrow label of u is forced

- if u is unlabeled, d(u) = 2 and u has a labeled neighbor v and a (possibly unlabeled) neighbor of degree 3
- \Rightarrow label of u is forced

An algorithm for L(2,1)-labelings of span 4

Rule 2 - Easy Extension

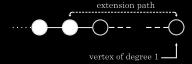
- if P is an extension path with one endpoint of degree 1
- \Rightarrow by Lemma 1, P is irrelevant, thus we remove P from G



 \rightarrow If neither Rule 1 nor Rule 2 can be applied, every unlabeled

Rule 2 - Easy Extension

- if P is an extension path with one endpoint of degree 1
- \Rightarrow by Lemma 1, P is irrelevant, thus we remove P from G

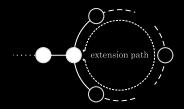


 \rightarrow If neither Rule 1 nor Rule 2 can be applied, every unlabeled vertex adjacent to the connected labeled component has degree 2.

Rule 3 - Cheap Extensions

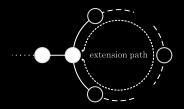
- ullet if P is an extension path with both endpoints labeled and of degree 2
- \Rightarrow it is easy to decide whether P has a labeling compatible with its labeled endpoints

- if P is an extension path with identical endpoints
- \Rightarrow it is easy to decide whether P has a labeling compatible with its labeled endpoints



Remark: up to now, no branching was needed

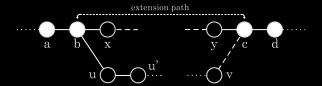
- if P is an extension path with identical endpoints
- \Rightarrow it is easy to decide whether P has a labeling compatible with its labeled endpoints



Remark: up to now, no branching was needed

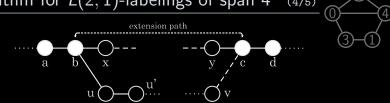
Rule 4 - Extensions with Strong Constraints

- if P is an extension path such that
 - both endpoints are labeled by 0 or 4
 - each endpoint has only one labeled neighbor
 - at least one endpoint has degree 3
- ⇒ Branch along possible labelings of the (at most 4) unlabeled neighb of the endpoints + extend these labelings to entire path P.



By Rule 1-2, degrees of u and v (it it exists) are precisely 2.

An algorithm for L(2,1)-labelings of span 4



minimum L(2,1)-lab span

Let $T(\mu(G))$ be the maximum number of leaves in a search tree corresponding to an execution on a graph with measure $\mu(G)$.

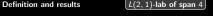
$$\mu(G) = \tilde{n} + \epsilon \hat{n}$$

where

- \tilde{n} is the number of unlabeled vertices with no labeled neighbor
- \hat{n} is the number of unlabled vertices having a labeled neighbor
- ϵ is a constant in $[0,1] \Rightarrow \mu(G) \leq n$.

If length
$$(P) = 1$$
. Let $P = b, x, c$.

(no branching is needed).



An algorithm for L(2,1)-labelings of span 4

minimum L(2,1)-lab span

Let $T(\mu(G))$ be the maximum number of leaves in a search tree corresponding to an execution on a graph with measure $\mu(G)$.

$$\mu(G) = \tilde{n} + \epsilon \hat{n}$$

where

- \tilde{n} is the number of unlabeled vertices with no labeled neighbor
- \hat{n} is the number of unlabled vertices having a labeled neighbor
- ϵ is a constant in $[0,1] \Rightarrow \mu(G) < n$.

(no branching is needed).

If length(P) = 1. Let P = b, x, c. \Rightarrow Since the labels of b and c are in $\{0,4\}$, the label of x is 2

20/44

An algorithm for L(2,1)-labelings of span 4 (4/5)

If length
$$(P) = 2$$
. Let $P = b, x, y, c$.

 \Rightarrow The possible labelings for *abxycd* are (up to symmetric labeling f' = 4 - f):

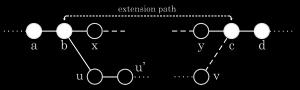
Only the last case needs to branch into 2 subproblems and for each

▶ 3 vertices are labeled if
$$d(c) = 2$$
; or

• 4 vertices are labeled if d(c) = 3.

21/44

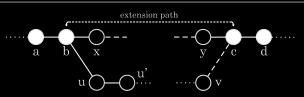
An algorithm for L(2,1)-labelings of span 4



If length(P) = 3. Let P = b, x, z, y, c.

 \Rightarrow By doing the same analysis, we can establish that we have to branch in at most 2 subproblems.

If length(P) > 4. Let $P = b, x, \dots, y, c$.



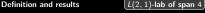
If length(P) = 3. Let P = b, x, z, y, c.

 \Rightarrow By doing the same analysis, we can establish that we have to branch in at most 2 subproblems.

If length(P) > 4. Let $P = b, x, \dots, y, c$.

 \Rightarrow There are two possible labelings for x, u and two possible labelings for y and eventually v.

For each of these 4 cases we check if it extends to a labeling of P.



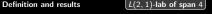
L(2,1)-lab of span 4 minimum L(2,1)-lab span

An algorithm for L(2,1)-labelings of span 4

Consider the unlabeled neighbor u' of u.

if
$$w(u') = 1$$
. Labeling u would decrease $w(u')$ to ϵ .

$$w(u') = \epsilon$$
. Then u' has a labeled neighbor u''



minimum L(2,1)-lab span

An algorithm for L(2,1)-labelings of span 4

Consider the unlabeled neighbor u' of u.

if
$$w(u') = 1$$
. Labeling u would decrease $w(u')$ to ϵ .

$$w(u') = \epsilon$$
. Then u' has a labeled neighbor u''

be labeled without branching by Rule 4.

Definition and results L(2, 1)-lab of span 4

b of span 4 minimum L(2, 1)-lab span

Consider the unlabeled neighbor u' of u.

if
$$w(u') = 1$$
. Labeling u would decrease $w(u')$ to ϵ .
if $w(u') = \epsilon$. Then u' has a labeled neighbor u'' .

Data Dilata / has dama 2

Due to Rule 1, u' has degree 2.

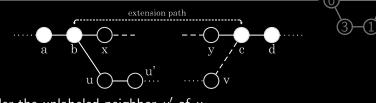
Labeling u would create an extension path P' = uu'u'' that can be labeled without branching by Rule 4.

Thus w(u') would decrease to 0.

f v exists then u
eq v, otherwise Rule 1 would label ι However, it is possible that u' = v. Definition and results L(2,1)-lab of span 4

An algorithm for L(2,1)-labelings of span 4

minimum L(2,1)-lab span



Consider the unlabeled neighbor u' of u.

if
$$w(u') = 1$$
. Labeling u would decrease $w(u')$ to ϵ .

if
$$w(u') = \epsilon$$
. Then u' has a labeled neighbor u'' .

Due to Rule 1, u' has degree 2.

Labeling u would create an extension path P' = uu'u'' that can be labeled without branching by Rule 4.

Thus w(u') would decrease to 0.

If v exists then $u \neq v$, otherwise Rule 1 would label u. However, it is possible that u' = v.

minimum L(2,1)-lab span

An algorithm for L(2,1)-labelings of span 4 extension path

Putting it all together, labeling P, u and v would decrease the measure $\mu(G)$ by :

If
$$V$$
 exists. $2\epsilon + (length)$

$$x$$
 and y

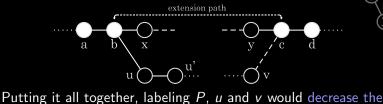
ces
$$x$$
 and

$$\min(1-\epsilon,\epsilon)$$
 for vertex u

Definition and results

L(2,1)-lab of span 4 minimum L(2,1)-lab span

An algorithm for L(2,1)-labelings of span 4



measure $\mu(G)$ by :

if
$$v$$
 exists. $2\epsilon + (\text{length}(P) - 2) + 2\epsilon$
 $\triangleright 2\epsilon$ for vertices x and y

length
$$(P) - 2$$
 for the other vertices of P

length(
$$P$$
) – 2 for the other vertices of P
 $\geq 2\epsilon$ for vertices u and v

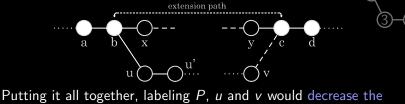
$$v$$
 do not exists. $2\epsilon +$

ices
$$x$$
 and

$$\epsilon$$
 for vertex μ

$$\min(1-\epsilon,\epsilon)$$
 for vertex μ

Definition and results L(2,1)-lab of span 4 minimum L(2,1)-lab span An algorithm for L(2,1)-labelings of span 4



measure $\mu(G)$ by :

if
$$v$$
 exists. $2\epsilon + (\text{length}(P) - 2) + 2\epsilon$
 $\triangleright 2\epsilon$ for vertices x and y

 \triangleright 2 ϵ for vertices u and v

▶ length(
$$P$$
) – 2 for the other vertices of P

if v do not exists.
$$2\epsilon + (length(P) - 2) + \epsilon + min(1 - \epsilon, \epsilon)$$

$$2\epsilon$$
 -

$$2\epsilon$$
 +

$$ightharpoonup 2\epsilon$$
 for vertices x and y

length(
$$P$$
) – 2 for the other vertices of P

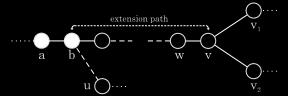
24/44

→ If none of Rules 1-4 can be applied, every unlabeled vertex adjacent to a labeled vertex belongs to an extension path with one unlabeled endpoint of degree 3.

Rule 5 - Extensions with Weak Constraints

- if *P* is an extension path such that the unlabeled endpoint has degree 3

 Reach along possible labelings of *y*, *w* and eventually *y*.
- \Rightarrow Branch along possible labelings of v, w and eventually u + extend these labelings to entire P.



By Rule 1, neither v_1 nor v_2 are labeled or adjacent to a labeled vertex $\Rightarrow w(v_1) = w(v_2) = 1$. And thus $u \neq v_1$ and $u \neq v_2$.

Definition and results L(2,1)-lab of span 4 minimum L(2,1)-lab span

→ If none of Rules 1-4 can be applied, every unlabeled vertex adjacent to a labeled vertex belongs to an exten-

Rule 5 - Extensions with Weak Constraints

sion path with one unlabeled endpoint of degree 3.

• if P is an extension path such that the unlabeled endpoint has degree 3

 \Rightarrow Branch along possible labelings of v, w and eventually u + extend these labelings to entire P.

By Rule 1, neither v_1 nor v_2 are labeled or adjacent to a labeled vertex $\Rightarrow w(v_1) = w(v_2) = 1$. And thus $u \neq v_1$ and $u \neq v_2$.

25/44

Definition and results L(2, 1)-lab of span 4

of span 4 minimum L(2, 1)-lab span

An algorithm for L(2,1)-labelings of span 4 (5/5) v_1 v_1 v_2 v_3 v_1

Labeling P and the vertex u would decrease the measure $\mu(G)$ by :

if *u* exists.
$$\epsilon + (\text{length}(P) - 1) + 2 - 2\epsilon + \epsilon$$

- \triangleright ϵ for the first vertex of P
- ▶ length(P) 1 for the other vertices of P
- \triangleright 2 2 ϵ for vertices v_1 and v_2
 - $ightharpoonup \epsilon$ for vertex u

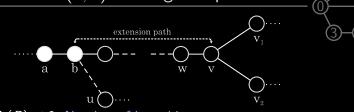
if u do not exists.
$$\epsilon + (length(P) - 1) + 2 - 2\epsilon$$

- \triangleright ϵ for the first vertex of P
 - ▶ length(P) 1 for the other vertices of P
 - \triangleright 2 2 ϵ for vertices v_1 and v_2



L(2,1)-lab of span 4

An algorithm for L(2,1)-labelings of span 4



minimum L(2, 1)-lab span

(5/5)

If length(P) < 8. Number of branchings :

			0	
length(P)	number	of	number	of
	branchings	if	branchings	if
	deg(b) = 2		deg(b) = 3	
1	1		1	
2	1		1	
3	2		2	
4	3		3	
5	3		3	
6	5		6	
7	5		6	
8	5		7	

If length $(P) \ge 9$. If deg(b) = 2, there are 6 possible labelings of v and w; otherwise, there are 12 possible labelings of v, w and u.

Setting $\epsilon = 0.819$ in the measure

$$\mu(G) = \tilde{n} + \epsilon \hat{n}$$

and solving the corresponding recurrences establishes:

Theorem. The computation of an L(2,1)-labeling of span 4, if one exists, can be done in time $O(1.3006^n)$.

An algorithm to compute the minimim span

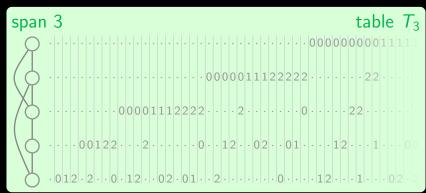
- 1 Introduction
- **2** Definition of L(2,1)-labelings and known results
- 3 Branching algorithm for span 4 labelings
- 4 A fast algorithm to compute the minimum span
- **5** Conclusion

Simple idea : fill-in table T_ℓ corresponding to partial labelings using up to ℓ labels.

table T_3 span 3

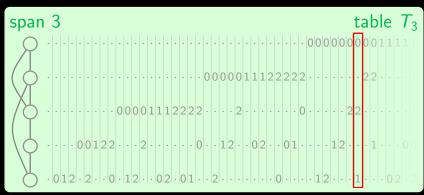
Dynamic programming for L(2,1)-labeling

Simple idea : fill-in table T_{ℓ} corresponding to partial labelings using up to ℓ labels.



Dynamic programming for L(2,1)-labeling

Simple idea : fill-in table T_{ℓ} corresponding to partial labelings using up to ℓ labels.



Dynamic programming for L(2,1)-labeling

Simple idea : fill-in table T_{ℓ} corresponding to partial labelings using up to ℓ labels.

use a compact representation for partial labelings

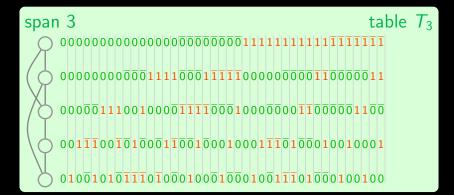
reduce the number of algebraic operations to compute next tables

Representation of partial L(2,1)-labelings

Jump to a compact representation

Table T_{ℓ} contains a vector $\vec{a} \in \{0, \overline{0}, 1, \overline{1}\}^n$ if and only if there is a partial labeling $\varphi \colon V \to \{0, \dots, \ell\}$ such that :

- $ightharpoonup a_i = 0$ iff v_i is not labeled by φ and there is no neighbor u of v_i with $\varphi(u) = \ell$
- $ightharpoonup a_i = \overline{0}$ iff v_i is not labeled by φ_i and there is a neighbor u of v_i with $\varphi(u) = \ell$
- $ightharpoonup a_i = 1$ iff $\varphi(v_i) < \ell$
- $ightharpoonup a_i = \overline{1}$ iff $\varphi(v_i) = \ell$



How to compute table $T_{\ell+1}$ from table T_{ℓ} ?

Let $P \subseteq \{0,1\}^n$ be the encodings of all 2-packings of G.

Formally, $\vec{p} \in P \Leftrightarrow \exists$ a 2-packing $S \subseteq V$ such that $\forall i, p_i = 1$ iff $v_i \in S$.

Compute $T_{\ell+1}$ from " $T_{\ell} \oplus P$ ".

Define the partial function \oplus : $\{0,\overline{0},1,\overline{1}\} \times \{0,1\} \rightarrow \{0,1,\overline{1}\}$ as :

Entry "-" signifies that \oplus is not defined.

Generalization of \oplus to vectors :

$$a_1a_2\dots a_n\oplus b_1b_2\dots b_n=egin{cases} (a_1\oplus b_1)\dots (a_n\oplus b_n) & \text{if }\oplus \text{ is defined} \\ undefined & \text{otherwise} \end{cases}$$

Then $T_\ell \oplus P$ is already almost the same as $T_{\ell+1}$:

$$\vec{a} \in T_{\ell+1}$$
 iff there is an $\vec{a'} \in T_{\ell} \oplus P$ such that

- lacksquare $a_i=0$ iff $a_i'=0$ and there is no $v_j\in N(v_i)$ with $a_j'=\overline{1}$
- lacksquare $a_i=\overline{0}$ iff $a_i'=0$ and there is a $v_j\in N(v_i)$ with $a_j'=\overline{1}$
- $ightharpoonup a_i = 1$ iff $a'_i = 1$
- $ightharpoonup a_i = \overline{1} \text{ iff } a_i' = \overline{1}$

How to compute $T_{\ell} \oplus P$ rapidly?

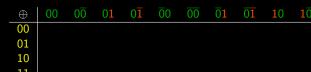
Definition. $A_w = \{ \vec{v} \mid w \cdot v \in A \}$

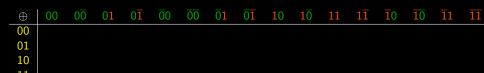
$$A \oplus B = 0((A_0 \cup A_{\overline{0}}) \oplus B_0)$$

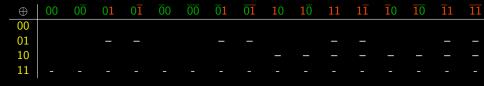
$$\cup 1((A_1 \cup A_{\overline{1}}) \oplus B_0)$$

$$\cup \overline{1}(A_0 \oplus B_1)$$

where $A := T_{\ell}$ (partial labelings) and B := P (encodings of the 2-packings)







two adjacent vertices

\oplus	00	00	01	01	00	00	$\overline{01}$	01	10	10	11	$1\overline{1}$	10	10	$\overline{1}1$	11
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	-
01	$0\overline{1}$	2	_	_	$0\overline{1}$	2	_	_	$1\overline{1}$	2	_	_	$1\overline{1}$	2	_	_
10	$\overline{1}0$	$\overline{1}0$	$\overline{1}1$	$\overline{1}1$	2	2	2	2	_	_	_	_	_	_	_	_
11	_															

Computing the tables

\oplus	00	00	01	01	00	00	01	01	1 0	10	11	11	10	10	11	1:
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	-
01	$0\overline{1}$	~	_	_	$0\overline{1}$	2	_	_	$1\overline{1}$	2	_	_	$1\overline{1}$	2	_	-
10	$\overline{1}0$	$\overline{1}0$	$\overline{1}1$	$\overline{1}1$	~	2	~	2	_	_	_	_	_	_	_	-
11																

 \rightarrow Prefix $\overline{11}$ cannot appear.

Definition and results L(2,1)-lab of span 4 $\underbrace{\text{minimum }L(2,1)$ -lab span

~																
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	-
01	$0\overline{1}$	2	_	_	$0\overline{1}$	2	_	_	$1\overline{1}$	2	_	_	$1\overline{1}$	2	_	_
10	$\overline{1}0$	$\overline{1}0$	$\overline{1}1$	$\overline{1}1$	~	~	~	~	_	_	_	_	_	_	_	_
11																

\oplus	00	$0\overline{0}$	01	$0\overline{1}$	$\overline{0}0$	00	$\overline{0}$ 1	01	1 0	$1\overline{0}$	11	$1\overline{1}$	$\overline{1}0$	<u>10</u>	$\overline{1}1$	11
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	-
01	$0\overline{1}$	2	_	_	$0\overline{1}$	2	_	_	$1\overline{1}$	2	_	_	$1\overline{1}$	2	_	_
10	$\overline{1}0$	$\overline{1}0$	$\overline{1}1$	$\overline{1}1$	~	~	~	~	_	_	_	_	_	_	_	_
11																

$$A \oplus B = 00((A_{00} \cup A_{\overline{00}} \cup A_{\overline{00}} \cup A_{\overline{00}}) \oplus B_{00})$$

$$A \oplus B = 00((A_{00} \cup A_{0\overline{0}} \cup A_{\overline{00}} \cup A_{\overline{00}}) \oplus B_{00})$$

$$\cup 01((A_{01} \cup A_{\overline{01}} \cup A_{\overline{01}} \cup A_{\overline{01}}) \oplus B_{00})$$

\oplus	00	$0\overline{0}$	01	$0\overline{1}$	$\overline{0}0$	00	$\overline{0}1$	01	10	1 0	11	$1\overline{1}$	$\overline{1}0$	10	$\overline{1}1$	$\overline{11}$
00	00	00	01	01	00	00	01	01	10	10	11	11	10	10	11	-
01	$0\overline{1}$	2	_	_	$0\overline{1}$	~	_	_	$1\overline{1}$	2	_	_	$1\overline{1}$	2	_	_
10	$\overline{1}0$	$\overline{1}0$	$\overline{1}1$	$\overline{1}1$	2	2	2	2	_	_	_	_	_	_	_	_

$$A \oplus B = 00((A_{00} \cup A_{0\overline{0}} \cup A_{\overline{00}} \cup A_{\overline{00}}) \oplus B_{00})$$

$$\cup 01((A_{01} \cup A_{0\overline{1}} \cup A_{\overline{01}} \cup A_{\overline{01}}) \oplus B_{00})$$

$$\cup 10((A_{10} \cup A_{1\overline{0}} \cup A_{\overline{10}} \cup A_{\overline{10}}) \oplus B_{00})$$

$$\cup 11((A_{11} \cup A_{\overline{11}} \cup A_{\overline{11}}) \oplus B_{00})$$

$$\cup 0\overline{1}((A_{00} \cup A_{\overline{00}}) \oplus B_{01})$$

$$\cup 1\overline{1}((A_{10} \cup A_{\overline{10}}) \oplus B_{01})$$

$$\cup \overline{10}((A_{00} \cup A_{0\overline{0}}) \oplus B_{10})$$

$$\cup \overline{11}((A_{01} \cup A_{0\overline{1}}) \oplus B_{10})$$

 \oplus 00 00 00 00 00 10 01 01 01 01 10 111110 $0\overline{1}$ $0\overline{1}$ 11 11 01 $\overline{1}0$ 10 $\overline{1}0$ $\overline{1}1$ $\overline{11}$ 11 $A \oplus B = 00((A_{00} \cup A_{\overline{00}} \cup A_{\overline{00}} \cup A_{\overline{00}}) \oplus B_{00})$

L(2,1)-lab of span 4

 $01((A_{01} \cup A_{0\overline{1}} \cup A_{\overline{0}1} \cup A_{\overline{0}\overline{1}}) \oplus B_{00})$ $10((A_{10} \cup A_{1\overline{0}} \cup A_{\overline{1}0} \cup A_{\overline{1}\overline{0}}) \oplus B_{00})$

minimum L(2, 1)-lab span

10

11

Definition and results

Computing the tables

$$egin{array}{lll} & \cup & 11((A_{11} \cup A_{1\overline{1}} \cup A_{\overline{11}}) \oplus B_{00}) \ & \cup & 0\overline{1}((A_{00} \cup A_{\overline{00}}) \oplus B_{01}) \ & \cup & 1\overline{1}((A_{10} \cup A_{\overline{10}}) \oplus B_{01}) \ & \cup & \overline{1}0((A_{00} \cup A_{0\overline{0}}) \oplus B_{10}) \ & \cup & \overline{1}1((A_{01} \cup A_{\overline{01}}) \oplus B_{10}) \end{array}$$

 \cup

Running-time: $T(n) = 8 \cdot T(n-2) = 8^{n/2} < 2.8285^n$

Theorem. The minimum span of an L(2,1)-labeling can be computed in time $\mathcal{O}(2.6488^n)$.

We need further results:

- instead of considering 2 adjacent vertices, consider $k' = \mathcal{O}(1)$ vertices;
- consider prefix of larger length, when it makes sense for ⊕ operation;
- show that any connected graph can be "partitioned" into sufficiently large connected subgraphs of size about k';
- establish a combinatorial upper-bound on the number of proper pairs.

Additional Result 1

Theorem. Let G be a connected graph and let k < n.

Then there exist connected subgraphs G_1, G_2, \ldots, G_q of G s.t.

- (i) every vertex of G belongs to at least one of them
- (ii) the order of each of $G_1, G_2, \ldots, G_{q-1}$ is at least k and at most 2k (while for G_q we only require $|V(G_q)| \leq 2k$)
- (iii) the sum of the numbers of vertices of $G_i's$ is at most $n(1+\frac{1}{k})$

Independent sets are related to colorings, but 2-packings to L(2,1)-labelings.

Definition. 2-packings = Independent Sets in G^2 .

A subset $S \subseteq V$ s.t. $\forall u, v \in S$, $N[u] \cap N[v] = \emptyset$ is a 2-packing.

Definition. A pair (S, X) of subsets of V is a **proper pair** if $S \cap X = \emptyset$ and S is a 2-packing.

Definition. The number of proper pairs in a graph G is given by

$$pp(G) = \sum_{\text{2-packings } S} 2^{n-|S|}$$

Let $pp(n) = \max pp(G)$ be the maximum number of proper pairs in a connected graph with n vertices.

Theorem.

$$2.6117^n \le pp(n) \le 2.6488^n$$

▶ proof

Let $A \subseteq \{0, \overline{0}, 1, \overline{1}\}^n$ and $B \subseteq \{0, 1\}^n$ and k' < n'.

Compute $A \oplus B$ in the following way :

$$\begin{split} A \oplus B &= \bigcup_{\substack{\vec{u} \in \{0, \overline{0}, 1, \overline{1}\}^{k'} \\ \vec{v} \in \{0, 1\}^{k'} \\ \text{s.t. } \vec{u} \oplus \vec{v} \text{ is defined}}} (\vec{u} \oplus \vec{v}) (A_{\vec{u}} \oplus B_{\vec{v}}) \\ &= \bigcup_{\substack{\vec{v} \in \{0, 1\}^{k'} \\ \vec{w} \in \{0, 1, \overline{1}\}^{k'} \\ \text{s.t. } \vec{u} \oplus \vec{v} = \vec{w}}} \vec{w} \left[\left(\bigcup_{\vec{u} \in \{0, \overline{0}, 1, \overline{1}\}^{k'} \\ \text{s.t. } \vec{u} \oplus \vec{v} = \vec{w}}} A_{\vec{u}} \right) \oplus B_{\vec{v}} \right] \end{split}$$

Remark

 \oplus computation can be omitted whenever $\left(\bigcup_{\vec{u} \in \{0,\overline{0},1,\overline{1}\}^{k'}} A_{\vec{u}}\right)$ is empty

How many pairs \vec{v} , \vec{w} s.t. there is at least one \vec{u} with $\vec{u} \oplus \vec{v} = \vec{w}$?

If
$$ec{v}$$
 is fixed, then $v_i=1\Rightarrow w_i=\overline{1}$

Thus, for a fixed \vec{v} there are at most $2^{k'-|\vec{v}|}$ many \vec{w} 's, where $||\vec{v}||$ denotes the number of positions i such that $v_i = 1$

The total number of pairs \vec{v}, \vec{w} such that $\vec{w} = \vec{u} \oplus \vec{v}$ for some \vec{u} is therefore at most

$$\sum_{\vec{v} \in \{0,1\}^{k'}} 2^{k' - ||\vec{v}||} \leq pp(k')$$

 \Rightarrow We need to make pp(k') recursive computations of \oplus on sets of vectors of length n-k'.

How many pairs \vec{v} , \vec{w} s.t. there is at least one \vec{u} with $\vec{u} \oplus \vec{v} = \vec{w}$?

If
$$\vec{v}$$
 is fixed, then $v_i = 1 \Rightarrow w_i = \overline{1}$.

Thus, for a fixed \vec{v} there are at most $2^{k'-||\vec{v}||}$ many \vec{w} 's, where $||\vec{v}||$ denotes the number of positions i such that $v_i = 1$.

The total number of pairs \vec{v}, \vec{w} such that $\vec{w} = \vec{u} \oplus \vec{v}$ for some \vec{u} is therefore at most

$$\sum_{\vec{v} \in \{0,1\}^{k'}} 2^{k' - ||\vec{v}||} \leq pp(k')$$

 \Rightarrow We need to make pp(k') recursive computations of \oplus on sets of vectors of length n-k'.

How many pairs \vec{v} , \vec{w} s.t. there is at least one \vec{u} with $\vec{u} \oplus \vec{v} = \vec{w}$?

If
$$\vec{v}$$
 is fixed, then $v_i = 1 \Rightarrow w_i = \overline{1}$.

Thus, for a fixed \vec{v} there are at most $2^{k'-||\vec{v}||}$ many \vec{w} 's, where $||\vec{v}||$ denotes the number of positions i such that $v_i = 1$.

The total number of pairs \vec{v}, \vec{w} such that $\vec{w} = \vec{u} \oplus \vec{v}$ for some \vec{u} is therefore at most

$$\sum_{\vec{v} \in \{0,1\}^{k'}} 2^{k' - ||\vec{v}||} \leq pp(k')$$

 \Rightarrow We need to make pp(k') recursive computations of \oplus on sets of vectors of length n-k'.

How many pairs \vec{v} , \vec{w} s.t. there is at least one \vec{u} with $\vec{u} \oplus \vec{v} = \vec{w}$?

If \vec{v} is fixed, then $v_i = 1 \Rightarrow w_i = 1$.

Thus, for a fixed \vec{v} there are at most $2^{k'-||\vec{v}||}$ many \vec{w} 's, where $||\vec{v}||$ denotes the number of positions i such that $v_i = 1$.

The total number of pairs \vec{v}, \vec{w} such that $\vec{w} = \vec{u} \oplus \vec{v}$ for some \vec{u} is therefore at most

$$\sum_{\vec{v} \in \{0,1\}^{k'}} 2^{k' - ||\vec{v}||} \leq pp(k')$$

 \Rightarrow We need to make pp(k') recursive computations of \oplus on sets of vectors of length n-k'.

How many pairs \vec{v} , \vec{w} s.t. there is at least one \vec{u} with $\vec{u} \oplus \vec{v} = \vec{w}$?

If \vec{v} is fixed, then $v_i = 1 \Rightarrow w_i = \overline{1}$.

Thus, for a fixed \vec{v} there are at most $2^{k'-||\vec{v}||}$ many \vec{w} 's, where $||\vec{v}||$ denotes the number of positions i such that $v_i = 1$.

The total number of pairs \vec{v}, \vec{w} such that $\vec{w} = \vec{u} \oplus \vec{v}$ for some \vec{u} is therefore at most

$$\sum_{\vec{v} \in \{0,1\}^{k'}} 2^{k' - ||\vec{v}||} \leq pp(k')$$

 \Rightarrow We need to make pp(k') recursive computations of \oplus on sets of vectors of length n-k'.

- 1 Introduction
- 2 Definition of L(2,1)-labelings and known results
- (3) Branching algorithm for span 4 labelings
- (4) A fast algorithm to compute the minimum span
- **Conclusion**

minimum L(2, 1)-lab span

Short summary.

- decide span 4 : $\mathcal{O}(1.3006^n)$
- solving L(2,1) in time $\mathcal{O}(2.6488^n)$ (best known algo)

It is also possible to consider counting and enumeration versions of the problem:

- count span 4 : $\mathcal{O}(1.1269^n)$ (exp-space)
- enumerate span 5 in cubic graphs : $\mathcal{O}(1.7990^n)$

Conclusion

Short summary.

- \blacktriangleright decide span 4 : $\mathcal{O}(1.3006^n)$
- solving L(2,1) in time $\mathcal{O}(2.6488^n)$ (best known algo)

It is also possible to consider counting and enumeration versions of the problem :

- ightharpoonup count span 4 : $\mathcal{O}(1.1269^n)$ (exp-space)
- ightharpoonup enumerate span 5 in cubic graphs : $\mathcal{O}(1.7990^n)$ [CGKLP,2013

Interesting questions.

- ▶ Does a clever choice of the measure $\mu(G)$ can help to improve significantly the running time analysis?
- ▶ Is it possible to solve L(2,1)-labeling faster? *E.g.* in $O^*(2^n)$ -time? To establish lower-bound, via ETH?

"For every polynomial-time algorithm you have, there is an exponential algorithm that I would rather run."

[Alan Perlis 1]

co-authors of the presented works :

Frédéric Havet Konstanty Junosza-Szaniawski Martin Klazar Jan Kratochvíl Dieter Kratsch Peter Rossmanith Pawel Rzazewski

1. first recipient of the Turing price, 1966

"For every polynomial-time algorithm you have, there is an exponential algorithm that I would rather run."

[Alan Perlis 1]

Merci!

co-authors of the presented works :

Frédéric Havet Konstanty Junosza-Szaniawski Martin Klazar Jan Kratochvíl Dieter Kratsch Peter Rossmanith Pawel Rzazewski

^{1.} first recipient of the Turing price, 1966

L(2,1)-lab of span 4

Proof 1/2

- Consider a DFS-tree T of G rooted at r.
- For every v let T(v) be the subtree rooted in v.
- If $|T(r)| \leq 2k$ then add G to the set of desired subgraphs and stop.
- If there is a vertex v such that $k \leq |T(v)| \leq 2k$ then add G[V(T(v))] to the set of desired subgraphs and proceed recursively with $G \setminus V(T(v))$.

Decomposing the graph into connected subgraphs (proof)

◆ back

Proof

2/2

Otherwise there must be a vertex v such that |T(v)| > 2k and for its every child u, |T(u)| < k.

In such a case find a subset $\{u_1, \ldots, u_i\}$ of children of v such that $k-1 < |T(u_1)| + \cdots + |T(u_i)| < 2k-1$

Add $G[\{v\} \cup V(T(u_1)) \cup \cdots \cup V(T(u_i))]$ to the set of desired subgraphs and proceed recursively with $G \setminus (V(T(u_1)) \cup ... \cup V(T(u_i))).$

This procedure terminates after at most $\frac{n}{k}$ steps and in each of them we have left at most one vertex of the identified connected subgraph in the further processed graph.

2-Packings and Proper Pairs (proof)

Proof.

Let G = (V, E) be a connected graph.

Fact 1. If S is a 2-packing, then S is also a 2-packing of $G = (V, E \setminus e)$, for any edge e.

 \Rightarrow we can assume G to be a tree.

Fact 2. Suppose that there are two leaves which have a common neighbor. Every 2-packing in G is also a 2-packing in H.

⇒ we can assume that there are no two or more leaves with a common neighbor

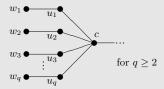
2-Packings and Proper Pairs (proof)

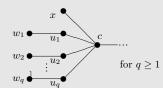
Proof.

(A) If $deg(c) \leq 2$ then

$$pp(n) \leq 2\,pp(n-1) + 4\,pp(n-3)$$

(B) If deg(c) > 2 and





(B0) no neighbor of c is a leaf ...

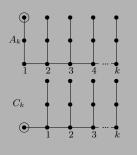
$$pp(n) \le 2^{2q} pp(n-2q) + (3^{q-1}2^{q+1}(3+q) - 2^{2q+1}) pp(n-2q-1)$$

(B1) one neighbor of c is a leaf ...

$$pp(n) \le 2^{2q+1} pp(n-2q-1) + (3^{q-1}2^{q+1}(9+2q)-2^{2q+2}) pp(n-2q-2)$$

2-Packings and Proper Pairs (proof)

To show the lower bound, we consider the following graphs :



$$\begin{cases} a_k = 2b_{k-1} + 4a_{k-1} \\ b_k = 2c_k + 2d_k \\ c_k = 2a_k + 12d_{k-1} \\ d_k = 4d_{k-1} + 12a_{k-1} \end{cases}$$

Theorem.

 $2.6117^n \le pp(n) \le 2.6488^n$

◆ back

By Theorem (*), the total length of the vectors is $n' \le n(1+1/k)$.

In each recursive computation:

- ▶ Prepare up to pp(k') many pairs of sets of vectors of length n' k'
- ► Recursively compute ⊕ on these pairs
- ▶ From the result, compute $T_{\ell+1}$ in linear time
- ► The size of B is at most $O(n2^{n'})$ bits
- The size of A is at most O(npp(n')) bits : the $\overline{1}$'s form a 2-packing and there are only two possibilities (1 or $0/\overline{0}$) for the other nodes.

Thus the running-time is given by

$$T(n) \leq O(n \cdot pp(n') + pp(k') \cdot T(n'-k'))$$

where k < k' < 2k.

minimum L(2,1)-lab span

An exact algorithm – Running-time analysis

◆ back

The solution of

$$T(n) \leq O(n \cdot pp(n') + pp(k') \cdot T(n'-k'))$$

is

$$T(n) = O^*(pp(n')) = O^*(pp(n(1+1/k)))$$

Choosing constant k big enough:

$$T(n) = O(2.6488^n)$$