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Introduction

Many problems need super-polynomial time to be solved, due to :

I NP-hardness (the question P = NP is still open)

I nature of the problem (enumerating a large number of objects)

Kurt Gödel to John von Neumann (1956) :

� It would be interesting to know [...] how strongly in general the
number of steps in finite combinatorial problems can be reduced

with respect to simple exhaustive search. �

For some problems (e.g. SAT), the best known algorithms are just
trivial enumeration, but for many others we can do better.
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Our goal :

Focus on NP-hard problems and solve it provably faster
than by exhaustive search.

input
size

running
time f (n) = 2n

f (n) = 1.41n

x 2x

Under the scope of moderately exponential-time algorithms, we
deal with the following types of problems :

I decision

I optimization

I counting

I enumeration
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In this talk we give moderately exponential-time algorithms for
a frequency assignment problem :

computing L(2, 1)-labelings in graphs.

I broadcast network

I assign frequencies
to transmitters

I avoid undesired
interference

4/44



J Definition and results L(2, 1)-lab of span 4 minimum L(2, 1)-lab span I

In this talk we give moderately exponential-time algorithms for
a frequency assignment problem :

computing L(2, 1)-labelings in graphs.

I broadcast network

I assign frequencies
to transmitters

I avoid undesired
interference

4/44



J Definition and results L(2, 1)-lab of span 4 minimum L(2, 1)-lab span I

In this talk we give moderately exponential-time algorithms for
a frequency assignment problem :

computing L(2, 1)-labelings in graphs.

I broadcast network

I assign frequencies
to transmitters

I avoid undesired
interference

4/44



J Definition and results L(2, 1)-lab of span 4 minimum L(2, 1)-lab span I

In this talk we give moderately exponential-time algorithms for
a frequency assignment problem :

computing L(2, 1)-labelings in graphs.

I broadcast network

I assign frequencies
to transmitters

I avoid undesired
interference

4/44



J Definition and results L(2, 1)-lab of span 4 minimum L(2, 1)-lab span I

Outline of the talk

1 Introduction

2 Definition of L(2, 1)-labelings and known results

3 Branching algorithm for span 4 labelings

4 A fast algorithm to compute the minimum span

5 Conclusion
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An algorithm to compute the minimim span
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2 Definition of L(2, 1)-labelings and known results

3 Branching algorithm for span 4 labelings

4 A fast algorithm to compute the minimum span

5 Conclusion
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Definition of L(2, 1)-labeling

L(2, 1)-labeling

Input : A graph G = (V ,E ).
Question : Compute a function ` of minimum span k
` : V → {0, . . . , k} s.t.

I u and v adjacent ⇒ |`(u)− `(v)| ≥ 2

I u and v at distance two ⇒ |`(u)− `(v)| ≥ 1
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→ Model introduced by Roberts, 19887/44
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Complexity results

Many complexity results :

Theorem [Griggs and Yeh, 1992] [Fiala, Kloks, Kratochv́ıl, 2001]

Determining the minimum span λ(G ) of a graph G is NP-hard.

Deciding whether λ(G ) ≤ k remains NP-c for every fixed k ≥ 4.

Separates treewidth 1 and 2 by P / NP-completeness dichotomy :

Theorem [Chang, Kuo 1996] [Fiala, Golovach, Kratochv́ıl, 2005]

L(2, 1)-labeling problem is polynomial time solvable on trees,
but NP-complete for series-parallel graphs (k is part of the input).

Much more difficult than ordinary coloring :

Theorem [Fiala, Golovach, Kratochv́ıl, 2005] [Janczewski, Kosowski, Ma lafiejski, 2009]

NP-completeness for series-parallel graphs (k is part of the input).

Deciding whether λ ≤ 4 is NP-complete for planar graphs.
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Moderately exponential-time algorithms

I decide span 4 : O(1.3006n) (poly-space) [HKKKL,2011]

I count span 4 : O(1.1269n) (exp-space) [CGKLP,2013]

I enumerate span 5 in cubic graphs : O(1.7990n) [CGKLP,2013]

Computing the minimum span k :

I polynomial space :

O∗ ((k − 2.5)n) [HKKKL,2011]

O(7.50n) [JSKLR,2012]

O(3.4642n) [Kowalik, Socala,2014]

I exponential space :

O∗(4n) [Král’,2006]

O∗(15n/2) = O(3.88n) [HKKKL,2011]

O∗(3n) [Cygan, Kowalik,2011]

O∗(2.6488n) [JSKLRR,2013]
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L(2, 1)-labelings and LIH

A convenient way to study L(2, 1)-labelings is via locally injective
homomorphisms :

homomorphism : A mapping f : V (G ) → V (H) is a homomor-
phism from G to H if f (u)f (v) ∈ E (H) for every edge uv ∈ E (G ).

locally injective homomorphism (LIH) : A homomorphism
f : G → H is locally injective if for every vertex u ∈ V (G ) its
neighborhood is mapped injectively into the neighborhood of f (u)
in H, i.e., every two vertices having a common neighbor in G are
mapped onto disctinct vertices in H.

Fiala and Kratochv́ıl, 2002 :

Theorem. L(2, 1)-labelings of span k are locally injective homomor-
phisms into the complement of the path of length k .
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L(2, 1)-labelings and LIH
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L(2, 1)-labelings and LIH

L(2, 1)-labelings of span 4 can trivially be decided in O(2n) time.
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An algorithm for L(2, 1)-labelings of span 4 (1/5)

Description of the rules of the algorithm :

Rule 1 - Forced Extensions

• if u is unlabeled and its labeled neighbor v has two labeled
neighbors

⇒ label of u is forced

• if u is unlabeled and its labeled neighbor v has label 1, 2 or 3

⇒ label of u is forced

14/44
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An algorithm for L(2, 1)-labelings of span 4 (1/5)

• if u is unlabeled, d(u) = 3 and u has a labeled neighbor v

⇒ label of u is forced

• if u is unlabeled, d(u) = 2 and u has a labeled neighbor v and a
(possibly unlabeled) neighbor of degree 3

⇒ label of u is forced
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An algorithm for L(2, 1)-labelings of span 4 (2/5)

Rule 2 - Easy Extension

• if P is an extension path with one endpoint of degree 1

⇒ by Lemma 1, P is irrelevant, thus we remove P from G

→ If neither Rule 1 nor Rule 2 can be applied, every unlabeled
vertex adjacent to the connected labeled component has degree 2.
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An algorithm for L(2, 1)-labelings of span 4 (3/5)

Rule 3 - Cheap Extensions

• if P is an extension path with both endpoints labeled and of
degree 2

⇒ it is easy to decide whether P has a labeling compatible with its
labeled endpoints

17/44
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An algorithm for L(2, 1)-labelings of span 4 (3/5)

• if P is an extension path with identical endpoints

⇒ it is easy to decide whether P has a labeling compatible with its
labeled endpoints

Remark : up to now, no branching was needed

18/44
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An algorithm for L(2, 1)-labelings of span 4 (4/5)

Rule 4 - Extensions with Strong Constraints

• if P is an extension path such that

I both endpoints are labeled by 0 or 4

I each endpoint has only one labeled neighbor

I at least one endpoint has degree 3

⇒ Branch along possible labelings of the (at most 4) unlabeled
neighb of the endpoints ; extend these labelings to entire path P.

By Rule 1-2, degrees of u and v (it it exists) are precisely 2.
19/44
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An algorithm for L(2, 1)-labelings of span 4 (4/5)
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Let T (µ(G )) be the maximum number of leaves in a search tree
corresponding to an execution on a graph with measure µ(G ).

µ(G ) = ñ + εn̂
where

I ñ is the number of unlabeled vertices with no labeled neighbor

I n̂ is the number of unlabled vertices having a labeled neighbor

I ε is a constant in [0, 1] ⇒ µ(G ) ≤ n.

If length(P) = 1. Let P = b, x , c .
⇒ Since the labels of b and c are in {0, 4}, the label of x is 2
(no branching is needed).
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An algorithm for L(2, 1)-labelings of span 4 (4/5)
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If length(P) = 2. Let P = b, x , y , c .

⇒ The possible labelings for abxycd are (up to symmetric labeling
f ′ = 4− f ) :

40xy40→ 403140 40xy42→ 403142 40xy02→ 402402
40xy03→ 402403 20xy03→ 204203 20xy04→ 204204
20xy40→ 203140 20xy42→ 203142 30xy02→ 302402
30xy04→ 304204 30xy03→ 302403, 304203.

Only the last case needs to branch into 2 subproblems and for each

I 3 vertices are labeled if d(c) = 2 ; or

I 4 vertices are labeled if d(c) = 3.
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An algorithm for L(2, 1)-labelings of span 4 (4/5)
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If length(P) = 3. Let P = b, x , z , y , c .

⇒ By doing the same analysis, we can establish that we have to
branch in at most 2 subproblems.

If length(P) ≥ 4. Let P = b, x , . . . , y , c .

⇒ There are two possible labelings for x , u and two possible
labelings for y and eventually v .

For each of these 4 cases we check if it extends to a labeling of P.
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An algorithm for L(2, 1)-labelings of span 4 (4/5)
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Consider the unlabeled neighbor u′ of u.

if w(u′) = 1. Labeling u would decrease w(u′) to ε.

if w(u′) = ε. Then u′ has a labeled neighbor u′′.

Due to Rule 1, u′ has degree 2.

Labeling u would create an extension path P ′ = uu′u′′ that can
be labeled without branching by Rule 4.

Thus w(u′) would decrease to 0.

If v exists then u 6= v , otherwise Rule 1 would label u.
However, it is possible that u′ = v .
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An algorithm for L(2, 1)-labelings of span 4 (4/5)
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Putting it all together, labeling P, u and v would decrease the
measure µ(G ) by :

if v exists. 2ε+ (length(P)− 2) + 2ε

I 2ε for vertices x and y
I length(P)− 2 for the other vertices of P
I 2ε for vertices u and v

if v do not exists. 2ε+ (length(P)− 2) + ε+ min(1− ε, ε)
I 2ε for vertices x and y
I length(P)− 2 for the other vertices of P
I ε for vertex u
I min(1− ε, ε) for vertex u′

(depends on the existence of an already labeled neighbor).
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An algorithm for L(2, 1)-labelings of span 4 (5/5)

→ If none of Rules 1-4 can be applied, every unlabeled
vertex adjacent to a labeled vertex belongs to an exten-
sion path with one unlabeled endpoint of degree 3.

Rule 5 - Extensions with Weak Constraints

• if P is an extension path such that the unlabeled endpoint has
degree 3

⇒ Branch along possible labelings of v , w and eventually u ;

extend these labelings to entire P.

By Rule 1, neither v1 nor v2 are labeled or adjacent to a labeled
vertex ⇒ w(v1) = w(v2) = 1. And thus u 6= v1 and u 6= v2.

25/44
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An algorithm for L(2, 1)-labelings of span 4 (5/5)
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Labeling P and the vertex u would decrease the measure µ(G ) by :

if u exists. ε+ (length(P)− 1) + 2− 2ε+ ε

I ε for the first vertex of P
I length(P)− 1 for the other vertices of P
I 2− 2ε for vertices v1 and v2

I ε for vertex u

if u do not exists. ε+ (length(P)− 1) + 2− 2ε

I ε for the first vertex of P
I length(P)− 1 for the other vertices of P
I 2− 2ε for vertices v1 and v2
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An algorithm for L(2, 1)-labelings of span 4 (5/5)
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P5

0

1

2

3

4

If length(P) ≤ 8. Number of branchings :

length(P) number of
branchings if
deg(b) = 2

number of
branchings if
deg(b) = 3

1 1 1
2 1 1
3 2 2
4 3 3
5 3 3
6 5 6
7 5 6
8 5 7

If length(P) ≥ 9. If deg(b) = 2, there are 6 possible labelings of v
and w ; otherwise, there are 12 possible labelings of v , w and u.
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An algorithm for L(2, 1)-labelings of span 4

Setting ε = 0.819 in the measure

µ(G ) = ñ + εn̂

and solving the corresponding recurrences establishes :

Theorem. The computation of an L(2, 1)-labeling of span 4, if one
exists, can be done in time O(1.3006n).
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An algorithm to compute the minimim span

1 Introduction

2 Definition of L(2, 1)-labelings and known results

3 Branching algorithm for span 4 labelings

4 A fast algorithm to compute the minimum span

5 Conclusion
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Dynamic programming for L(2,1)-labeling

Simple idea : fill-in table T` corresponding to partial labelings
using up to ` labels.

span 3 table T3

use a compact representation for partial labelings
+

reduce the number of algebraic operations to compute next tables
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Representation of partial L(2, 1)-labelings

Jump to a compact representation

Table T` contains a vector ~a ∈ {0, 0, 1, 1}n if and only if there is a
partial labeling ϕ : V → {0, . . . , `} such that :

I ai = 0 iff vi is not labeled by ϕ
and there is no neighbor u of vi with ϕ(u) = `

I ai = 0 iff vi is not labeled by ϕ
and there is a neighbor u of vi with ϕ(u) = `

I ai = 1 iff ϕ(vi ) < `

I ai = 1 iff ϕ(vi ) = `
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Representation of partial L(2, 1)-labelings

span 3 table T3
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Computing the tables

How to compute table T`+1 from table T` ?

Let P ⊆ {0, 1}n be the encodings of all 2-packings of G .

Formally, ~p ∈ P ⇔ ∃ a 2-packing S ⊆ V such that ∀i , pi = 1 iff vi ∈ S .

Compute T`+1 from “T` ⊕ P”.

Define the partial function ⊕ : {0, 0, 1, 1} × {0, 1} → {0, 1, 1} as :

⊕ 0 0 1 1

0 0 0 1 1
1 1 ∼ – –

Entry “–” signifies that ⊕ is not defined.

Generalization of ⊕ to vectors :

a1a2 . . . an⊕b1b2 . . . bn =

{
(a1 ⊕ b1) . . . (an ⊕ bn) if ⊕ is defined

undefined otherwise
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Computing the tables

Then T` ⊕ P is already almost the same as T`+1 :

~a ∈ T`+1 iff there is an ~a′ ∈ T` ⊕ P such that

I ai = 0 iff a′i = 0 and there is no vj ∈ N(vi ) with a′j = 1

I ai = 0 iff a′i = 0 and there is a vj ∈ N(vi ) with a′j = 1

I ai = 1 iff a′i = 1

I ai = 1 iff a′i = 1
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Computing the tables

How to compute T` ⊕ P rapidly ?

Definition. Aw = {~v | w · v ∈ A}

⊕ 0 0 1 1

0 0 0 1 1
1 1 ∼ – –

example :

(0, 0, 0, 1, 1)
⊕ (0, 1, 0, 0, 0)

(0, 1, 0, 1, 1)

A⊕ B = 0((A0 ∪ A0)⊕ B0)

∪ 1((A1 ∪ A1)⊕ B0)

∪ 1(A0 ⊕ B1)

where A := T` (partial labelings) and B := P (encodings of the 2-packings)
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Computing the tables

36/44

⊕ 0 0 1 1

0 0 0 1 1
1 1 ∼ – –

two adjacent vertices

⊕ 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 11

00

00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 -

01

01 ∼ – – 01 ∼ – – 11 ∼ – – 11 ∼ – –

10

10 10 11 11 ∼ ∼ ∼ ∼ – – – – – – – –

11

- - - - - - - - - - - - - - - -
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Computing the tables

36/44

⊕ 0 0 1 1

0 0 0 1 1
1 1 ∼ – –

two adjacent vertices

⊕ 00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 11

00

00 00 01 01 00 00 01 01 10 10 11 11 10 10 11 -

01

01

∼ – –

01

∼ – –

11

∼ – –

11

∼ – –
10

10 10 11 11

∼ ∼ ∼ ∼ – – – – – – – –
11 - - - - - - - - - - - - - - - -



J Definition and results L(2, 1)-lab of span 4 minimum L(2, 1)-lab span I

Computing the tables
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Computing the tables
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⊕ 0 0 1 1

0 0 0 1 1
1 1 ∼ – –

two adjacent vertices
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10 10 10 11 11 ∼ ∼ ∼ ∼ – – – – – – – –
11 - - - - - - - - - - - - - - - -

→ Prefix 11 cannot appear.
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Computing the tables
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01 01 ∼ – – 01 ∼ – – 11 ∼ – – 11 ∼ – –
10 10 10 11 11 ∼ ∼ ∼ ∼ – – – – – – – –
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Running-time : T (n) = 8 · T (n − 2) = 8n/2 < 2.8285n
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Extension to larger prefixes

Theorem. The minimum span of an L(2,1)-labeling can be compu-
ted in time O(2.6488n).

We need further results :

I instead of considering 2 adjacent vertices, consider k ′ = O(1)
vertices ;

I consider prefix of larger length, when it makes sense for ⊕
operation ;

I show that any connected graph can be “partitioned” into
sufficiently large connected subgraphs of size about k ′ ;

I establish a combinatorial upper-bound on the number of proper
pairs.
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Decomposing the graph into connected subgraphs

Theorem. Let G be a connected graph and let k < n.

Then there exist connected subgraphs G1,G2, . . . ,Gq of G s.t.

(i) every vertex of G belongs to at least one of them

(ii) the order of each of G1,G2, . . . ,Gq−1 is at least k and
at most 2k (while for Gq we only require |V (Gq)| ≤ 2k)

(iii) the sum of the numbers of vertices of G ′i s is at most n(1 + 1
k )

proof

39/44
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2-Packings and Proper Pairs

Independent sets are related to colorings, but 2-packings to L(2, 1)-labelings.

Definition. 2-packings = Independent Sets in G 2.
A subset S ⊆ V s.t. ∀u, v ∈ S , N[u] ∩ N[v ] = ∅ is a 2-packing.

Definition. A pair (S ,X ) of subsets of V is a proper pair
if S ∩ X = ∅ and S is a 2-packing.

Definition. The number of proper pairs in a graph G is given by

pp(G ) =
∑

2-packings S

2n−|S|

Let pp(n) = max pp(G ) be the maximum number of proper pairs in
a connected graph with n vertices.

Theorem. 2.6117n ≤ pp(n) ≤ 2.6488n

proof
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An exact algorithm – Running-time analysis

Let A ⊆ {0, 0, 1, 1}n and B ⊆ {0, 1}n and k ′ < n′.

Compute A⊕ B in the following way :

A⊕ B =
⋃

~u∈{0,0,1,1}k′

~v∈{0,1}k′

s.t. ~u⊕~v is defined

(~u ⊕ ~v)(A~u ⊕ B~v )

=
⋃

~v∈{0,1}k′

~w∈{0,1,1}k′

~w
[( ⋃

~u∈{0,0,1,1}k′

s.t. ~u⊕~v=~w

A~u

)
⊕ B~v

]

Remark :

⊕ computation can be omitted whenever
(⋃

~u∈{0,0,1,1}k′
s.t. ~u⊕~v=~w

A~u

)
is empty.
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An exact algorithm – Running-time analysis

How many pairs ~v , ~w s.t. there is at least one ~u with ~u ⊕ ~v = ~w ?

If ~v is fixed, then vi = 1⇒ wi = 1.

Thus, for a fixed ~v there are at most 2k
′−||~v || many ~w ’s,

where ||~v || denotes the number of positions i such that vi = 1.

The total number of pairs ~v , ~w such that ~w = ~u ⊕ ~v for some ~u is
therefore at most

∑

~v∈{0,1}k′
2k
′−||~v || ≤ pp(k ′)

⇒ We need to make pp(k ′) recursive computations of ⊕ on sets of
vectors of length n − k ′. more details

Theorem. The minimum span of an L(2,1)-labeling can be compu-
ted in time O(2.6488n).

42/44



J Definition and results L(2, 1)-lab of span 4 minimum L(2, 1)-lab span I

An exact algorithm – Running-time analysis

How many pairs ~v , ~w s.t. there is at least one ~u with ~u ⊕ ~v = ~w ?

If ~v is fixed, then vi = 1⇒ wi = 1.

Thus, for a fixed ~v there are at most 2k
′−||~v || many ~w ’s,

where ||~v || denotes the number of positions i such that vi = 1.

The total number of pairs ~v , ~w such that ~w = ~u ⊕ ~v for some ~u is
therefore at most

∑

~v∈{0,1}k′
2k
′−||~v || ≤ pp(k ′)

⇒ We need to make pp(k ′) recursive computations of ⊕ on sets of
vectors of length n − k ′. more details

Theorem. The minimum span of an L(2,1)-labeling can be compu-
ted in time O(2.6488n).

42/44



J Definition and results L(2, 1)-lab of span 4 minimum L(2, 1)-lab span I

An exact algorithm – Running-time analysis

How many pairs ~v , ~w s.t. there is at least one ~u with ~u ⊕ ~v = ~w ?

If ~v is fixed, then vi = 1⇒ wi = 1.

Thus, for a fixed ~v there are at most 2k
′−||~v || many ~w ’s,

where ||~v || denotes the number of positions i such that vi = 1.

The total number of pairs ~v , ~w such that ~w = ~u ⊕ ~v for some ~u is
therefore at most

∑

~v∈{0,1}k′
2k
′−||~v || ≤ pp(k ′)

⇒ We need to make pp(k ′) recursive computations of ⊕ on sets of
vectors of length n − k ′. more details

Theorem. The minimum span of an L(2,1)-labeling can be compu-
ted in time O(2.6488n).

42/44



J Definition and results L(2, 1)-lab of span 4 minimum L(2, 1)-lab span I

An exact algorithm – Running-time analysis

How many pairs ~v , ~w s.t. there is at least one ~u with ~u ⊕ ~v = ~w ?

If ~v is fixed, then vi = 1⇒ wi = 1.

Thus, for a fixed ~v there are at most 2k
′−||~v || many ~w ’s,

where ||~v || denotes the number of positions i such that vi = 1.

The total number of pairs ~v , ~w such that ~w = ~u ⊕ ~v for some ~u is
therefore at most

∑

~v∈{0,1}k′
2k
′−||~v || ≤ pp(k ′)

⇒ We need to make pp(k ′) recursive computations of ⊕ on sets of
vectors of length n − k ′. more details

Theorem. The minimum span of an L(2,1)-labeling can be compu-
ted in time O(2.6488n).

42/44



J Definition and results L(2, 1)-lab of span 4 minimum L(2, 1)-lab span I

An exact algorithm – Running-time analysis

How many pairs ~v , ~w s.t. there is at least one ~u with ~u ⊕ ~v = ~w ?

If ~v is fixed, then vi = 1⇒ wi = 1.

Thus, for a fixed ~v there are at most 2k
′−||~v || many ~w ’s,

where ||~v || denotes the number of positions i such that vi = 1.

The total number of pairs ~v , ~w such that ~w = ~u ⊕ ~v for some ~u is
therefore at most

∑

~v∈{0,1}k′
2k
′−||~v || ≤ pp(k ′)

⇒ We need to make pp(k ′) recursive computations of ⊕ on sets of
vectors of length n − k ′. more details

Theorem. The minimum span of an L(2,1)-labeling can be compu-
ted in time O(2.6488n).

42/44



J Definition and results L(2, 1)-lab of span 4 minimum L(2, 1)-lab span I

Conclusion

1 Introduction

2 Definition of L(2, 1)-labelings and known results

3 Branching algorithm for span 4 labelings

4 A fast algorithm to compute the minimum span

5 Conclusion

43/44



J Definition and results L(2, 1)-lab of span 4 minimum L(2, 1)-lab span I

Conclusion

Short summary.

I decide span 4 : O(1.3006n)

I solving L(2, 1) in time O(2.6488n) (best known algo)

It is also possible to consider counting and enumeration versions of
the problem :

I count span 4 : O(1.1269n) (exp-space) [CGKLP,2013]

I enumerate span 5 in cubic graphs : O(1.7990n) [CGKLP,2013]

Interesting questions.

I Does a clever choice of the measure µ(G) can help to improve
significantly the running time analysis ?

I Is it possible to solve L(2,1)-labeling faster ? E.g. in O∗(2n)-time ?
To establish lower-bound, via ETH ?
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Decomposing the graph into connected subgraphs (proof)

Proof 1/2
I Consider a DFS-tree T of G rooted at r .

I For every v let T (v) be the subtree rooted in v .

I If |T (r)| ≤ 2k then add G to the set of desired subgraphs and stop.

I If there is a vertex v such that k ≤ |T (v)| ≤ 2k then add
G [V (T (v))] to the set of desired subgraphs and
proceed recursively with G \ V (T (v)).

back
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Decomposing the graph into connected subgraphs (proof)

Proof 2/2
I Otherwise there must be a vertex v such that |T (v)| > 2k and for

its every child u, |T (u)| < k .

In such a case find a subset {u1, . . . , ui} of children of v such that
k − 1 ≤ |T (u1)|+ · · ·+ |T (ui )| ≤ 2k − 1.

Add G [{v} ∪ V (T (u1)) ∪ · · · ∪ V (T (ui ))] to the set of desired
subgraphs and proceed recursively with
G \ (V (T (u1)) ∪ .. ∪ V (T (ui ))).

I This procedure terminates after at most n
k steps and in each of

them we have left at most one vertex of the identified connected
subgraph in the further processed graph.

back
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2-Packings and Proper Pairs (proof)

Proof. 1/2
Let G = (V ,E ) be a connected graph.

Fact 1. If S is a 2-packing, then S is also a 2-packing of
G = (V ,E \ e), for any edge e.

⇒ we can assume G to be a tree.

Fact 2. Suppose that there are two leaves which have a common
neighbor. Every 2-packing in G is also a 2-packing in H.

4 Junosza-Szaniawski et al.

Proof. Let G = (V, E) be a connected graph on n vertices such that pp(G) =
pp(n). We observe that if S is a 2-packing of G, then for any edge e of G, the
set S is also a 2-packing of G = (V, E \ {e}). Thus removing an edge does not
decrease the number of proper pairs and we can remove edges from the graph
as long as it stays connected. Hence without loss of generality, we assume that
G is a tree.

(∗) Suppose in G there are two leaves v1 and v2, which have a common neighbor
v3. Notice that every proper pair in G is proper in the graph H obtained
from G by removing the edge v1v3 and adding the edge v1v2 (see Figure 1).
Since this operation does not reduce the number of proper pairs, we can
assume that there are no two or more leaves with a common neighbor in G.

!!!
"""
!! ! " " "v1

v2

v3
# ! ! ! " " "v1 v2 v3

Fig. 1. Transformation of two leaves with a common neighbor.

It is easy to observe that pp(0) = 1, pp(1) = 3 and pp(2) = 8. Assume that
|V (G)| ≥ 3 and let P be a longest path in G. Let v be an end-vertex of the path
P , u its neighbor on P , and c a neighbor of u on P other that v (the third vertex
on P ). By the observation (∗) we can assume that deg(u) = 2.

(A) If deg(c) ≤ 2, we can partition all proper pairs (S, X) to two subsets: those
in which v /∈ S and those in which v ∈ S (see Figure 2).

! ! ! " " "v u c

Fig. 2. Case (A) with deg(c) ≤ 2.

Notice that if v /∈ S, then v can be in X or outside S ∪ X. If v ∈ S, then
none of the vertices {u, c} can belong to S. Each of them can be in X or outside
S ∪ X. Since the graphs G − v and G − {v, u, c} are connected, we obtain the
following recursion:

pp(n) ≤ 2 pp(n − 1) + 4 pp(n − 3). (1)

(B) If deg(c) > 2, then all vertices in the set {v ∈ V (G) : distG(v, c) = 2} except
at most one (the one belonging to the path P ) are leaves (since otherwise P is
not the longest path) and all neighbors of the vertex c except at most one are
of degree 2 (from (∗)). Hence one of the following two cases occurs:

(B0) No neighbor of c is a leaf in G (see Figure 3(a)).

⇒ we can assume that there are no two or more leaves with a
common neighbor

back
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Notice that if v /∈ S, then v can be in X or outside S ∪ X. If v ∈ S, then
none of the vertices {u, c} can belong to S. Each of them can be in X or outside
S ∪ X. Since the graphs G − v and G − {v, u, c} are connected, we obtain the
following recursion:

pp(n) ≤ 2 pp(n − 1) + 4 pp(n − 3). (1)

(B) If deg(c) > 2, then all vertices in the set {v ∈ V (G) : distG(v, c) = 2} except
at most one (the one belonging to the path P ) are leaves (since otherwise P is
not the longest path) and all neighbors of the vertex c except at most one are
of degree 2 (from (∗)). Hence one of the following two cases occurs:

(B0) No neighbor of c is a leaf in G (see Figure 3(a)).

pp(n) ≤ 2 pp(n − 1) + 4 pp(n − 3)

(B) If deg(c) > 2 and Fast Exact Algorithm for L(2, 1)-Labeling of Graphs 5

!
!

!"""
###

$
$

$

!! """ !!!
! !! ! " " "

w1

w2 c

w3

wq

u1

u2

u3

uq

for q ≥ 2

(a) Case (B0) with deg(c) > 2 and no
neighbor of c is a leaf.

!
!

!"""
###

$
$
$

!! """ !!! !! ! " " "w1 c

w2

wq

x

u1

u2

uq

for q ≥ 1
]

(b) Case (B1) with deg(c) > 2 and one
neighbor of c is a leaf.

Fig. 3. Cases (B0) and (B1)

(B1) There exists a vertex x ∈ N(c) which is a leaf in G (there can be at most
one such vertex by the observation (∗)) – (see Figure 3(b)).

Let W = {w1, . . . , wq} = {w ∈ V (G) : w is a leaf in G and distG(w, c) = 2}
and U = N(W ) in the case (B0) and U = N(W )∪{x} in the case (B1). We can
partition the set of proper pairs (S, X) to whose in which S ∩ (W ∪ U) = ∅ and
the others.

If S ∩ (W ∪ U) = ∅, each of the vertices in W ∪ U can be in X or outside
S ∪ X.

If S∩ (W ∪U) = Ŝ &= ∅, Ŝ must be a 2-packing in G. Notice that the number

of proper pairs (Ŝ, X̂) in G[W ∪U ∪{c}], such that Ŝ &= ∅ and c /∈ Ŝ is equal to:

1. (3q − 2q)2q+1 + q · 3q−12q+1 = 3q−12q+1(3 + q) − 22q+1 for q ≥ 2 in the case
(B0).

2. (3q − 2q)2q+2 + q · 3q−12q+2 + 3q2q+1 = 3q−12q+1(9 + 2q) − 22q+2 for q ≥ 1
in the case (B1).

Each of the vertices in (W ∪ U ∪ {c}) \ Ŝ can be in X or outside S ∪ X.
Since the graphs G − (W ∪ U) and G − (W ∪ U ∪ {c}) are connected, we

obtain the following recursions:

pp(n) ≤ 22q pp(n − 2q) + (3q−12q+1(3 + q) − 22q+1) pp(n − 2q − 1) (2)

pp(n) ≤ 22q+1 pp(n − 2q − 1) + (3q−12q+1(9 + 2q) − 22q+2) pp(n − 2q − 2). (3)

We shall prove by induction on n that for n ≥ 0 the following holds:

pp(n) ≤ 2 · τn (4)

where τ = 2.6487.. is the positive root of the equation τ5 = 16τ + 88.

It is easy to observe that the inequality (4) holds for n ≤ 2. Now assume that
the inequality holds for all values smaller than n.

Case (A)
pp(n) ≤ 2 pp(n − 1) + 4pp(n − 3) ≤ 4τn−1 + 8τn−3 = 4(τ2 + 2)τn−3 <

2 · τ3 · τn−3 = 2 · τn

(B0) no neighbor of c is a leaf ...

pp(n) ≤ 22q pp(n− 2q) + (3q−12q+1(3 + q)− 22q+1) pp(n− 2q − 1)

(B1) one neighbor of c is a leaf ...

pp(n) ≤ 22q+1 pp(n − 2q − 1) + (3q−12q+1(9 + 2q)− 22q+2) pp(n − 2q − 2)

back
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2-Packings and Proper Pairs (proof)

To show the lower bound, we consider the following graphs :

6 Junosza-Szaniawski et al.

Case (B0)

pp(n) ≤ 22q pp(n − 2q) + (3q−12q+1(3 + q) − 22q+1) pp(n − 2q − 1) ≤ 2(22q ·
τn−2q + (3q−12q+1(3 + q)− 22q+1) · τn−2q−1) = 2 · τn(22q · τ−2q + (3q−12q+1(3 +

q) − 22q+1) · τ−2q−1) = 2 · τn(( 2
τ )2q − ( 2

τ )2q+1 + 4(3+q)
τ3 ( 6

τ2 )q−1)

One can easily verify that the function h0(x) = ( 2
τ )2x−( 2

τ )2x+1+ 4(3+x)
τ3 ( 6

τ2 )x−1

is decreasing for all real x > 2 and h0(2) = 1.

Hence pp(n) ≤ 2 · τn(( 2
τ )2q − ( 2

τ )2q+1 + 4(3+q)
τ3 ( 6

τ2 )q−1) ≤ 2 · τn.

Case (B1)

pp(n) ≤ 22q+1 pp(n − 2q − 1) + (3q−12q+1(9 + 2q) − 22q+2) pp(n − 2q − 2) ≤
2(22q+1τn−2q−1+(3q−12q+1(9+2q)−22q+2)τn−2q−2) = 2·τn(( 2

τ )2q+1−( 2
τ )2q+2)+

4(9+2q)
τ4 ( 6

τ2 )q−1)

Since the function h1(x) = ( 2
τ )2x+1 − ( 2

τ )2x+2 + 4(9+2x)
τ4 ( 6

τ2 )x−1 is decreasing
for all real x > 1 and h1(1) < 1, we obtain:

pp(n) ≤ 2 · τn(( 2
τ )2q+1 − ( 2

τ )2q+2 + 4(9+2q)
τ4 ( 6

τ2 )q−1) < 2 · τn.

We have shown that regardless of the structure of G, the function 2 · τn is
an upper bound on the number of proper pairs in G. Hence pp(n) = O(τn) =
O(2.6488n). #$

One is inclined to conjecture that the worst case is attained in the case of a
path Pn on n vertices. A simple calculation shows that pp(Pn) = Θ(2.5943..n).
The following example shows that intuition fails in this case.

Theorem 3. The value of pp(n) is bounded from below by Ω(2.6117n).

Proof. We shall prove the theorem by showing a graph with Θ(2.6117..n) proper
pairs. Let us consider the following graphs:

! ! !" " " " "
" " " " "
" " " " "#

1 2 3 4 k

Ak ! ! !" " " " " "
" " " "
" " " "

#
1 2 3 k

Bk

! ! !" " " " "
" " " "
" " " "

#
1 2 3 k

Ck ! ! !" " " " "
" " " " "
" " " " "

!!""

#

1 2 3 4 k

Dk

Let ak, bk and ck denote the number of proper pairs in the graphs Ak, Bk

and Ck, respectively. Let dk denote the number of such proper pairs (S, X) in
the graph Dk, in which the 2-packing S does not contain the crossed out vertex.

Considering separately the number of proper pairs (S, X), in which S con-
tains and does not contain marked vertices, we obtain the following system of





ak = 2bk−1 + 4ak−1

bk = 2ck + 2dk
ck = 2ak + 12dk−1

dk = 4dk−1 + 12ak−1

Theorem. 2.6117n ≤ pp(n) ≤ 2.6488n

back
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An exact algorithm – Running-time analysis

By Theorem (?), the total length of the vectors is n′ ≤ n(1 + 1/k).

In each recursive computation :

I Prepare up to pp(k ′) many pairs of sets of vectors of length n′ − k ′

I Recursively compute ⊕ on these pairs

I From the result, compute T`+1 in linear time

I The size of B is at most O(n2n′) bits

I The size of A is at most O(npp(n′)) bits :
the 1’s form a 2-packing and there are only two possibilities (1 or
0/0) for the other nodes.

Thus the running-time is given by

T (n) ≤ O(n · pp(n′) + pp(k ′) · T (n′ − k ′))

where k ≤ k ′ ≤ 2k .

back
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An exact algorithm – Running-time analysis

The solution of

T (n) ≤ O(n · pp(n′) + pp(k ′) · T (n′ − k ′))

is
T (n) = O∗(pp(n′)) = O∗(pp(n(1 + 1/k)))

Choosing constant k big enough :

T (n) = O(2.6488n)

back
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