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Introduction

Many problems need super-polynomial time to be solved, due to :

NP-hardness (the question P = NP is still open)

nature of the problem (enumerating a large number of objects)

Kurt Godel to John von Neumann (1956) :

< It would be interesting to know [...] how strongly in general the
number of steps in finite combinatorial problems can be reduced
with respect to simple exhaustive search. >

For some problems (e.g. SAT), the best known algorithms are just
trivial enumeration, but for many others we can do better.
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Our goal :

Focus on NP-hard problems and solve it provably faster

than by exhaustive search.

running B
time f(n) =2 f(n) =1.41"

input
size

Under the scope of moderately exponential-time algorithms, we
deal with the following types of problems :
decision counting

optimization enumeration
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In this talk we give moderately exponential-time algorithms for
a frequency assignment problem :

computing L(2,1)-labelings in graphs.
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In this talk we give moderately exponential-time algorithms for
a frequency assignment problem :

computing L(2,1)-labelings in graphs.

broadcast network
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In this talk we give moderately exponential-time algorithms for
a frequency assignment problem :

computing L(2,1)-labelings in graphs.

broadcast network

assign frequencies
to transmitters o
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In this talk we give moderately exponential-time algorithms for
a frequency assignment problem :
computing L(2,1)-labelings in graphs.

broadcast network

assign frequencies
to transmitters

avoid undesired
interference
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Outline of the talk

@ Introduction

@ Definition of L(2,1)-labelings and known results
(3 Branching algorithm for span 4 labelings

@ A fast algorithm to compute the minimum span

(& Conclusion
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An algorithm to compute the minimim span

@ Definition of L(2,1)-labelings and known results
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Definition of L(2,1)-labeling

7/44

L(2,1)-LABELING

Input : A graph G = (V, E).
Question : Compute a function £ of minimum span k

> wuand v adjacent = |¢(u) — 4(v)| > 2

> uand v at distance two = |{(u) —
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Complexity results

Many complexity results :

Theorem [Griggs and Yeh, 1992] [Fiala, Kloks, Kratochvil, 2001]

Determining the minimum span A(G) of a graph G is NP-hard.

Deciding whether A\(G) < k remains NP-c for every fixed k > 4.
Separates treewidth 1 and 2 by P / NP-completeness dichotomy :

Theorem [Chang, Kuo 1996] [Fiala, Golovach, Kratochvil, 2005]
L(2,1)-labeling problem is polynomial time solvable on trees,
but NP-complete for series-parallel graphs (k is part of the input).

Much more difficult than ordinary coloring :

Theorem [Fiala, Golovach, Kratochvil, 2005] [Janczewski, Kosowski, Matafiejski, 2009]
NP-completeness for series-parallel graphs (k is part of the input).

Deciding whether A < 4 is NP-complete for planar graphs.
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Moderately exponential-time algorithms

» decide span 4 : O(1.3006") (poly-space)
» count span 4 : O(1.1269") (exp-space)
» enumerate span 5 in cubic graphs : O(1.7990")

Computing the minimum span k :

» polynomial space :

o O ((k — 2.5)")
o O(7.50")
o O(3.4642")

> exponential space :

[HKKKL,2011]
[CGKLP,2013]

[CGKLP,2013]

[HKKKL,2011]
[JSKLR,2012]
[Kowalik, Socala,2014]

[Kral’,2006]
[HKKKL,2011]
[Cygan, Kowalik,2011]
[JSKLRR,2013]
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An algorithm to compute the minimim span

(3 Branching algorithm for span 4 labelings
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L(2,1)-labelings and LIH

A convenient way to study L(2,1)-labelings is via locally injective
homomorphisms :

homomorphism : A mapping f : V(G) — V(H) is a homomor-
phism from G to H if f(u)f(v) € E(H) for every edge uv € E(G).

locally injective homomorphism (LIH) : A homomorphism
f : G — H is locally injective if for every vertex u € V(G) its
neighborhood is mapped injectively into the neighborhood of f(u)
in H, i.e., every two vertices having a common neighbor in G are
mapped onto disctinct vertices in H.

Fiala and Kratochvil, 2002 :

Theorem. L(2,1)-labelings of span k are locally injective homomor-

phisms into the complement of the path of length k.
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L(2,1)-labelings and LIH
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L(2,1)-labelings and LIH

P (3
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L(2,1)-labelings and LIH

P ()

oA

uv € E(G) = f(u)f(v) € E(H)
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L(2,1)-labelings and LIH

Hob e

u € V(G) = N(u) is mapped injectively on N(f(u)) in H
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L(2,1)-labelings and LIH

P5Z 9
()

u € V(G) = N(u) is mapped injectively on N(f(u)) in H

12/44



| Definition and results L(2, 1)-lab of span 4
L(2,1)-labelings and LIH

13/44



| Definition and results L(2, 1)-lab of span 4
L(2,1)-labelings and LIH

13/44



| Definition and results L(2, 1)-lab of span 4
L(2,1)-labelings and LIH

13/44



| Definition and results L(2, 1)-lab of span 4
L(2,1)-labelings and LIH

13/44



< Definition and results L(2, 1)-lab of span 4 minimum L(2, 1)-lab span >
L(2,1)-labelings and LIH

L(2,1)-labelings of span 4 can trivially be decided in O(2") time.

Something faster ?
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An algorithm for L(2,1)-labelings of span 4 (/s

Description of the rules of the algorithm :

e if u is unlabeled and its labeled neighbor v has two labeled
neighbors

= label of u is forced
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An algorithm for L(2,1)-labelings of span 4 (/s &
il
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Description of the rules of the algorithm :

e if u is unlabeled and its labeled neighbor v has two labeled
neighbors

= label of u is forced

e if u is unlabeled and its labeled neighbor v has label 1, 2 or 3
= label of u is forced

I— labeled by 1,2 or 3
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An algorithm for L(2,1)-labelings of span 4 (/s

e if u is unlabeled, d(u) = 3 and u has a labeled neighbor v

= label of u is forced
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An algorithm for L(2,1)-labelings of span 4 (/s

e if u is unlabeled, d(u) = 3 and u has a labeled neighbor v

= label of u is forced

e if u is unlabeled, d(u) = 2 and u has a labeled neighbor v and a
(possibly unlabeled) neighbor of degree 3

= label of u is forced
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An algorithm for L(2,1)-labelings of span 4 (/s

e if P is an extension path with one endpoint of degree 1

= by Lemma 1, P is irrelevant, thus we remove P from G

extension path

...... P Wg ___é

vertex of degree 1 —I
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An algorithm for L(2,1)-labelings of span 4 (/s

e if P is an extension path with one endpoint of degree 1

= by Lemma 1, P is irrelevant, thus we remove P from G

extension path

...... P Wg ___é

vertex of degree 1 —I

— If neither Rule 1 nor Rule 2 can be applied, every unlabeled
vertex adjacent to the connected labeled component has degree 2.
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An algorithm for L(2,1)-labelings of span 4 (/s

e if P is an extension path with both endpoints labeled and of
degree 2

= it is easy to decide whether P has a labeling compatible with its
labeled endpoints

extension path

I— vertices of degree 2 —I
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An algorithm for L(2,1)-labelings of span 4 (/s

e if P is an extension path with identical endpoints

= it is easy to decide whether P has a labeling compatible with its
labeled endpoints
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An algorithm for L(2,1)-labelings of span 4 (/s

e if P is an extension path with identical endpoints

= it is easy to decide whether P has a labeling compatible with its
labeled endpoints

Remark : up to now, no branching was needed
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An algorithm for L(2,1)-labelings of span 4 (ass)

19/44

Rl - Bt i Stong Carsrs

e if P is an extension path such that
both endpoints are labeled by 0 or 4
each endpoint has only one labeled neighbor
at least one endpoint has degree 3

= Branch along possible labelings of the (at most 4) unlabeled
neighb of the endpoints 4 extend these labelings to entire path P.

extension path

By Rule 1-2, degrees of u and v (it it exists) are precisely 2.
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An algorithm for L(2,1)-labelings of span 4 (ass)

extension path

Let T(1(G)) be the maximum number of leaves in a search tree
corresponding to an execution on a graph with measure ;(G).

w(G) = i + e
where

fi is the number of unlabeled vertices with no labeled neighbor
fi is the number of unlabled vertices having a labeled neighbor

eis a constant in [0,1] = u(G) < n.
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An algorithm for L(2,1)-labelings of span 4 (ass)

extension path

Let T(1(G)) be the maximum number of leaves in a search tree
corresponding to an execution on a graph with measure ;(G).

w(G) = i + e
where

fi is the number of unlabeled vertices with no labeled neighbor
fi is the number of unlabled vertices having a labeled neighbor

eis a constant in [0,1] = u(G) < n.

If length(P) =1. Let P=b,x,c.
= Since the labels of b and ¢ are in {0,4}, the label of x is 2

(no branching is needed).
20/44
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An algorithm for L(2,1)-labelings of span 4 (ass) > ;}4)

extension path

If length(P) =2. Let P=b,x,y,c.

= The possible labelings for abxycd are (up to symmetric labeling
ff=4—-1):

40xy40 — 403140 40xy42 — 403142 40xy02 — 402402
40xy03 — 402403 20xy03 — 204203 20xy04 — 204204
20xy40 — 203140 20xy42 — 203142 30xy02 — 302402
30xy04 — 304204 30xy03 — 302403, 304203.

Only the last case needs to branch into 2 subproblems and for each

3 vertices are labeled if d(c) =2; or

4 vertices are labeled if d(c) = 3.
21/44
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An algorithm for L(2,1)-labelings of span 4 (ass) > ;PZ
extension path
/

If length(P) =3. Let P=b,x,2z,y,c.

= By doing the same analysis, we can establish that we have to
branch in at most 2 subproblems.
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An algorithm for L(2,1)-labelings of span 4 (ass)

22 /44

extension path

If length(P) =3. Let P=b,x,2z,y,c.

= By doing the same analysis, we can establish that we have to
branch in at most 2 subproblems.

If length(P) > 4. Let P=b,x,...,y,c.

= There are two possible labelings for x, u and two possible
labelings for y and eventually v.

For each of these 4 cases we check if it extends to a labeling of P.
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An algorithm for L(2,1)-labelings of span 4 (ass)

extension path

Consider the unlabeled neighbor v’ of u.
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An algorithm for L(2,1)-labelings of span 4 (ass)

extension path

Consider the unlabeled neighbor v’ of u.

if w(u')=1. Labeling u would decrease w(u’) to e.
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An algorithm for L(2,1)-labelings of span 4 (ass)

extension path

Consider the unlabeled neighbor v’ of u.

if w(u')=1. Labeling u would decrease w(u’) to e.

if w(u')=e. Then v has a labeled neighbor v”.
Due to Rule 1, ¢/ has degree 2.

Labeling u would create an extension path P/ = uu'u” that can

be labeled without branching by Rule 4.

Thus w(u") would decrease to 0.
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An algorithm for L(2,1)-labelings of span 4 (ass)

23/44

extension path

Consider the unlabeled neighbor v’ of u.

if w(u')=1. Labeling u would decrease w(u’) to e.

if w(u')=e. Then v has a labeled neighbor v”.

Due to Rule 1, ¢/ has degree 2.

Labeling u would create an extension path P/ = uu'u” that can

be labeled without branching by Rule 4.
Thus w(u") would decrease to 0.

If v exists then u # v, otherwise Rule 1 would label w.
However, it is possible that v/ = v.
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An algorithm for L(2,1)-labelings of span 4 (ass) %@g;)
extension path

Putting it all together, labeling P, u and v would decrease the
measure u(G) by :
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An algorithm for L(2,1)-labelings of span 4 (ass)

extension path

Putting it all together, labeling P, u and v would decrease the
measure 1(G) by :

if v exists.  2¢ + (length(P) — 2) + 2¢
2¢ for vertices x and y

length(P) — 2 for the other vertices of P
2¢ for vertices u and v

24 /44



< Definition and results L(2, 1)-lab of span 4 minimum L(2, 1)-lab span

An algorithm for L(2,1)-labelings of span 4 (ass)

extension path

Putting it all together, labeling P, u and v would decrease the
measure 1(G) by :

if v exists.  2¢+ (length(P) —2) + 2¢
2¢ for vertices x and y
length(P) — 2 for the other vertices of P
2¢ for vertices u and v

if v do not exists.  2¢ + (length(P) —2) + ¢ + min(1 — €, €)

2¢ for vertices x and y
length(P) — 2 for the other vertices of P
€ for vertex u
min(1 — ¢, €) for vertex u’
24/44 (depends on the existence of an already labeled neighbor).
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An algorithm for L(2,1)-labelings of span 4 (s/s)

— If none of Rules 1-4 can be applied, every unlabeled
vertex adjacent to a labeled vertex belongs to an exten-
sion path with one unlabeled endpoint of degree 3.

e if P is an extension path such that the unlabeled endpoint has
degree 3

= Branch along possible labelings of v , w and eventually v +
extend these labelings to entire P.

extension path

uO v,
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An algorithm for L(2,1)-labelings of span 4 (s/s)

— If none of Rules 1-4 can be applied, every unlabeled
vertex adjacent to a labeled vertex belongs to an exten-
sion path with one unlabeled endpoint of degree 3.

e if P is an extension path such that the unlabeled endpoint has
degree 3

= Branch along possible labelings of v , w and eventually v +
extend these labelings to entire P.

extension path

uO v,

By Rule 1, neither v; nor v» are labeled or adjacent to a labeled

oas  VETtEX = w(vi) = w(wva) = 1. And thus v # vi and u # vs.



< Definition and results L(2, 1)-lab of span 4 minimum L(2, 1)-lab span

An algorithm for L(2,1)-labelings of span 4 (s/s)

extension path

aO--

Labeling P and the vertex u would decrease the measure ;(G) by :

if uexists. €+ (length(P) —1)+2—2c+¢
€ for the first vertex of P
length(P) — 1 for the other vertices of P
2 — 2¢ for vertices v; and v,
€ for vertex u

if u do not exists. €+ (length(P) — 1) +2 — 2¢

e for the first vertex of P
length(P) — 1 for the other vertices of P

2 — 2¢ for vertices v; and v
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extension path

a b\\
\
\
u( )---- v,
If length(P) < 8. Number of branchings :
length(P)|| number of || number of
branchings if branchings if
deg(b) =2 deg(b) =3
1 1 1
2 1 1
3 2 2
4 3 3
) 3 3
6 5 6
7 5 6
8 5 7

If length(P) > 9. If deg(b) = 2, there are 6 possible labelings of v
and w ; otherwise, there are 12 possible labelings of v, w and wu.
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An algorithm for L(2,1)-labelings of span 4

Setting ¢ = 0.819 in the measure
w(G) = i+ eh

and solving the corresponding recurrences establishes :

Theorem. The computation of an L(2,1)-labeling of span 4, if one

exists, can be done in time O(1.3006").
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An algorithm to compute the minimim span

@ A fast algorithm to compute the minimum span
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Dynamic programming for L(2,1)-labeling

Simple idea : fill-in table T, corresponding to partial labelings
using up to £ labels.

span 3 table T3
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Dynamic programming for L(2,1)-labeling

Simple idea : fill-in table T, corresponding to partial labelings
using up to £ labels.

span 3 table T3

use a compact representation for partial labelings

_|_

reduce the number of algebraic operations to compute next tables
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Representation of partial L(2,1)-labelings

Jump to a compact representation

Table T, contains a vector 3 € {0,0,1,1}" if and only if there is a
partial labeling ¢: V — {0, ..., ¢} such that :

aj = iff v is not labeled by ¢
and there is no neighbor u of v; with p(u) =¢

aj = iff  v; is not labeled by ¢
and there is a neighbor u of v; with ¢(u) = ¢

aj=1 iff QO(V,') 4

aj = T iff <p(V,') =/
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Representation of partial L(2,1)-labelings

span 3 table T3
00000000000000000000000

00000000000 000

00000 0010000
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Computing the tables

33/44

How to compute table T, ; from table T,7?

Let P C {0,1}" be the encodings of all 2-packings of G.

Compute Tyy;1 from “Ty @ P".
Define the partial function &: {0,0,1,1} x {0,1} — {0,1,1} as :

o
=l o
! ©

—

= =

Generalization of @ to vectors :
(a1 @ b1)...(an® by) if @ is defined

aias...apdbiby... b, =
192 moELR " {undefined otherwise
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Computing the tables

Then T, @ P is already almost the same as T4 :

3 € Ty iff there is an ac Ty, ® P such that

a; = 0iff a; = 0 and there is no v; € N(v;) with a} = 1
aj = 0 iff a} = 0 and there is a v; € N(v;) with a} =1
a;=1iffaj=1

a,:TlfFaf:T

34 /44
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Computing the tables

How to compute T, @ P rapidly?

A®B= 0((A UA,) & Bo)
U 1((A1 U AT) @ Bo)
U 1(A @ B)

where A := T, (partial labelings) and B := P (encodings of the 2-packings)
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. ol ol
—_
=

2]
0
1

=l oo

® |00 00 01 0TI 00 00 01 O 10 10

11

11

10

10

sy

00
01
10
11

36 /44



< Definition and results L(2, 1)-lab of span 4 (minimum L(2, 1)-lab span |

Computing the tables

. ol ol
—_
=

2]
0
1

=l oo

@ |00 00 01 0I 00 00 01 01 10 10 11 11 10 10

sy

00
01
10
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Computing the tables

. ol ol
=
=

2]
0
1

=l oo

@ |00 00 01 0I 00 00 01 01 10 10 11 11 10 10

00
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@0 0 1 1

0/0 0 1 1

111 ~ - -
@ |00 00 01 0I 00 00 01 O0I 10 10 11 1I 10 10 11
00
01 ~ - = ~ - = ~ - - ~ —
10 ~ o~~~ = = - - oo
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Computing the tables

—
[l

=l o] O
! oo

2]
0
1

0l 00 00 O01 O01 10 10 11 11 10

® | 00 00 o01

0000 00 0L 01 00 00 O1L 01 10 10 11 11 10
o1{0f ~ - - 0 ~ - - 1 ~ - - 11
10|10 10 11 11 ~ ~ ~ ~ - — - - -
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@0 0 11

0/0 0 1 1

111 ~ - -
@ |00 00 01 01 00 00 01 01 10 10 11 11 10 I0 11 11
00 [00 00 01 0L 00 0O OL OI 10 10 11 11 10 10 11 -
orfoil ~ - - 0 ~ - - 1 ~ - - 11 ~ - -
010 10 11 11 ~ ~ ~ ~ — — — — — - - -

— Prefix 11 cannot appear.
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® |00 00 01 0I 00 00 01 O0I 10 10 11 11 To 10 11 1II

00 [00 00 0L 01 00 0O 0L 01 10 10 11 11 10 10 11 -

1|0l ~ - o ~ - - 11 ~ - - 11 ~ - -

10(10 10 11 11 ~ ~ ~ ~ - - - - - - - -
AdB=

37/44



<

Computing the tables

Definition and results

L(2, 1)-lab of span 4

(minimum L(2, 1)-lab span |

® |00 00 01 0I 00 00 01 O0I 10 10 11 11 To 10 11 1II

00 [00 00 0L 01 00 0O 0L 01 10 10 11 11 10 10 11 -

o1{ol ~ - - 0 ~ - - 1 ~ - - 11 ~ - -

1010 10 11 11 ~ ~ ~ ~ - = - — — — - -
A®B= 00((Aoo U A06 U AGO @] A@@) ©® Boo)
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Definition and results

L(2, 1)-lab of span 4
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® |00 00 01 0I 00 00 01 O0I 10 10 11 11 To 10 11 1II

00 [00 00 0L 01 00 0O 0L 01 10 10 11 11 10 10 11 -

o1{ol ~ - - 0 ~ - - 1 ~ - - 11 ~ - -

1010 10 11 11 ~ ~ ~ ~ - = - — — — - -
A®B= 00((Aoo U A06 U AGO @] A@@) ©® Boo)
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Extension to larger prefixes

Theorem. The minimum span of an L(2,1)-labeling can be compu-

ted in time O(2.6488").

We need further results :

instead of considering 2 adjacent vertices, consider k' = O(1)
vertices ;

consider prefix of larger length, when it makes sense for &
operation;

show that any connected graph can be “partitioned” into
sufficiently large connected subgraphs of size about k’;

establish a combinatorial upper-bound on the number of proper
pairs.
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Decomposing the graph into connected subgraphs

[“\0ditiona]

Theorem. Let G be a connected graph and let k < n. l.._]

Then there exist connected subgraphs Gi, Go,..., G4 of G s.t.

(i) every vertex of G belongs to at least one of them

(ii) the order of each of Gy, Gy, ..., G4_1 is at least k and
at most 2k (while for G we only require |V/(Gg)| < 2k)

(iii) the sum of the numbers of vertices of G/s is at most n(1+ +)



Definition and results L(2, 1)-lab of span 4 minimum L(2, 1)-lab span

2 Packings and Proper Pairs

Independent sets 2-packings

Definition. 2-packings = Independent Sets in G2.
A subset S C V s.t. Vu,v € S, N[u] N N[v] = 0 is a 2-packing.

Definition. A pair (S, X) of subsets of V is a proper pair
if SN X =0 and S is a 2-packing.

Definition. The number of proper pairs in a graph G is given by

;m pp(G)= Y 2k

A8 2-packings S

\,k ‘aﬂavx’/’,_\

Let pp(n) = max pp(G) be the maximum number of proper pairs in
a connected graph with n vertices.

Theorem. 2.6117" < pp(n) < 2.6488"
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An exact algorithm — Running-time analysis

Let AC{0,0,1,1}" and B C {0,1}" and k' < .
Compute A@® B in the following way :

7c{0,0,1,1}¥

ve{0,1}¥
s.t. 0V is defined

= U (U a)es]

ve{0,1}¥ 7€{0,0,1,1}¥

1,1}
WE{O,I,T}‘(I s.t. Ij@\? w
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An exact algorithm — Running-time analysis

How many pairs vV, w s.t. there is at least one i/ with TV =w?

42 /44
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An exact algorithm — Running-time analysis

42 /44

How many pairs V, w s.t. there is at least one i/ with ¥ vV =w?

If Vis fixed, then v, =1 = w; = 1.

Thus, for a fixed V there are at most 25 IVl many w's,
where ||V|| denotes the number of positions i such that v; = 1.

The total number of pairs v, w such that w = & @ vV for some i is
therefore at most

> 2 < pp(K)

ve{0,1}

» more details

Theorem. The minimum span of an L(2,1)-labeling can be compu-

ted in time 0(2.6488").
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An exact algorithm — Running-time analysis

42 /44

How many pairs vV, w s.t. there is at least one 0 with &' v =w?

If Vis fixed, then v, =1 = w; = 1.

Thus, for a fixed V there are at most 25 IVl many w's,
where ||V|| denotes the number of positions i such that v; = 1.

The total number of pairs v, w such that w = & &® vV for some i is
therefore at most

> 2K < pp(K)

ve{0,1}

» more details

Theorem. The minimum span of an L(2,1)-labeling can be compu-

ted in time (0(2.6488").
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An exact algorithm — Running-time analysis

How many pairs vV, w s.t. there is at least one 0 with &' v =w?

If Vis fixed, then v, =1 = w; = 1.

Thus, for a fixed V there are at most 25 IVl many w's,
where ||V|| denotes the number of positions 7 such that v; = 1.

The total number of pairs vV, w such that w = 7@ Vv for some I is
therefore at most

Yo 2 < pp(k)

ve{0,1}¥

» more details

Theorem. The minimum span of an L(2,1)-labeling can be compu-

ted in time (0(2.6488").
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An exact algorithm — Running-time analysis

42 /44

How many pairs vV, w s.t. there is at least one 0/ with THV =w?

If Vis fixed, then v; = 1 = w; = 1.

Thus, for a fixed V there are at most 251Vl many w's,
where ||V|| denotes the number of positions 7 such that v; = 1.

The total number of pairs vV, w such that w = & @ vV for some i is
therefore at most

S < )

ve{0,1}¥

= We need to make pp(k’) recursive computations of & on sets of
vectors of |ength n— I(/_ » more details

Theorem. The minimum span of an L(2,1)-labeling can be compu-

ted in time O(2.6488").




ion and results L(2, 1)-lab of span 4 minimum L(2, 1)-lab span

Conclusion

(& Conclusion
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Conclusion

Short summary.

» decide span 4 : O(1.3006")
» solving L(2,1) in time O(2.6488") (best known algo)

It is also possible to consider counting and enumeration versions of
the problem :

count span 4 : 0(1.1269") (exp-space)
enumerate span 5 in cubic graphs : O(1.7990")

44 /44



< Definition and results L(2, 1)-lab of span 4 minimum L(2, 1)-lab span

Conclusion

» decide span 4 : O(1.3006")
» solving L(2,1) in time O(2.6488") (best known algo)

It is also possible to consider counting and enumeration versions of
the problem :

count span 4 : 0(1.1269") (exp-space)
enumerate span 5 in cubic graphs : O(1.7990")

Interesting questions.

» Does a clever choice of the measure 14(G) can help to improve
significantly the running time analysis ?

» s it possible to solve L(2,1)-labeling faster? E.g. in O*(2")-time?
To establish lower-bound, via ETH ?
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Decomposing the graph into connected subgraphs (proof)

Proof 1/2
» Consider a DFS-tree T of G rooted at r.
> For every v let T(v) be the subtree rooted in v.
> If [T(r)| < 2k then add G to the set of desired subgraphs and stop.
> If there is a vertex v such that k < |T(v)| < 2k then add

G[V/(T(v))] to the set of desired subgraphs and
proceed recursively with G \ V(T (v)).
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Decomposing the graph into connected subgraphs (proof)

Proof 2/2
» Otherwise there must be a vertex v such that |T(v)| > 2k and for
its every child u, | T (u)| < k.

In such a case find a subset {u;, ..., u;} of children of v such that

k—1<|T(u)|+-- +|T(u)] <2k —1.

Add G[{v} U V(T (uy))U---UV(T(u;))| to the set of desired
subgraphs and proceed recursively with

G\ (V(T(wn))U..UV(T(uj))).

» This procedure terminates after at most ; steps and in each of
them we have left at most one vertex of the identified connected
subgraph in the further processed graph. ]
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2-Packings and Proper Pairs (proof)

Proof. 1/2

Let G = (V, E) be a connected graph.

Fact 1. If S is a 2-packing, then S is also a 2-packing of
G =(V,E\ e), for any edge e.

= we can assume G to be a tree.

Fact 2. Suppose that there are two leaves which have a common
neighbor. Every 2-packing in G is also a 2-packing in H.

U1 U3 U1 U2 U3
(%

= we can assume that there are no two or more leaves with a
common neighbor
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2-Packings and Proper Pairs (proof)
Proof. 2@

(A) If deg(c) < 2 then

v u Cc
® — —o— -

pp(n) < 2pp(n —1) + 4 pp(n — 3)
(B) If deg(c) > 2 and

w1

w3

for ¢ > 2 forg>1

Wq

(BO) no neighbor of c is a leaf ...
pp(n) < 2% pp(n —2q) + (39712771 (3 4 q) — 2*7"!) pp(n — 2g — 1)
(B1) one neighbor of c is a leaf ...

pp(n) < 2*7" pp(n — 2 — 1) + (3°727"1(9 + 29) — 2°7*) pp(n — 29 — 2)[]
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2-Packings and Proper Pairs (proof)

To show the lower bound, we consider the following graphs :

a = 2bx_1 + 4ak_1
bx = 2¢, + 2dy

ck = 2ak + 12d,_1
die = 4di_1+12a,_4

Theorem. 2.6117" < pp(n) < 2.6488"
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An exact algorithm — Running-time analysis

By Theorem (%), the total length of the vectors is n’ < n(1+ 1/k).

In each recursive computation :
Prepare up to pp(k’) many pairs of sets of vectors of length n’ — k’
Recursively compute & on these pairs

From the result, compute Tyy; in linear time

The size of B is at most O(n2") bits

vV vV v Vv VY

The size of A is at most O(npp(n’)) bits :
the 1's form a 2-packing and there are only two possibilities (1 or
0/0) for the other nodes.

Thus the running-time is given by
T(n) < O(n-pp(n') + pp(K') - T(n" = K))

where k < k' < 2k.
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An exact algorithm — Running-time analysis

The solution of

T(n) < O(n-pp(n') + pp(K') - T(n" = K))

T(n) = O*(pp(n)) = O*(pp(n(1 +1/k)))

Choosing constant k big enough :

T(n) = 0(2.6488")
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