

On the extension complexity of polytopes

Arnau Padrol

Insitut de Mathématiques de Jussieu -Paris Rive Gauche UPMC Paris 06

Journées nationales GDR IM 2017 15/03/2017

Extension complexity

A *polytope* P in \mathbb{R}^d is the convex hull of finitely many points

Its faces are intersections with supporting hyperplanes. Faces of dimensions 0 and d-1 are vertices and facets, respectively

An *extended formulation* of *P* is a polytope that can be linarly projected onto *P*

The *extension complexity* xc(*P*) is the minimal number of facets of an extended formulation

Extension complexity

A *polytope* P in \mathbb{R}^d is the convex hull of finitely many points

Its *faces* are intersections with supporting hyperplanes. Faces of dimensions 0 and d-1 are *vertices* and *facets*, respectively

An *extended formulation* of *P* is a polytope that can be linarly projected onto *P*

The extension complexity xc(P) is the minimal number of facets of an extended formulation

 $\dim +1 \leq xc(P) \leq \min(\# \text{ vertices } P, \# \text{ facets } P)$

Motivation: linear programming

If $\pi(Q) = P$, and Q has much fewer facets than P, then it is more efficient to optimize over Q than over P...

- Swart 80's claims that P = NP because the TSP-polytope (associated to the *Travelling Salesman Problem*) has a polynomial size extension
- Yannakakis 1991: Every symmetric extended formulation of TSP-polytope has exponential size (so Swart's proof was wrong)
- ► Kaibel, Pashkovich and Theis 2010: symmmetry matters
- Fiorini, Massar, Pokutta, Tiwary and de Wolf 2015: the extension complexity of the TSP-polytope is exponential

Nonnegative rank

The *nonnegative rank* of the nonnegative $n \times m$ matrix S is the smallest k such that there are nonnegative $n \times k$ and $k \times m$ matrices A and B such that

$$S = A \cdot B$$

$$\begin{bmatrix} 0 & 0 & 1 & 2 & 2 & 1 \\ 1 & 0 & 0 & 1 & 2 & 2 \\ 2 & 1 & 0 & 0 & 1 & 2 \\ 2 & 2 & 1 & 0 & 0 & 1 \\ 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 2 & 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 1 & 2 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Nonnegative rank

Theorem (Yannakakis '91)

The extension complexity of P coincides with the nonnegative rank of S(P)

Let v_1, \ldots, v_n be the vertices of P, f_1, \ldots, f_m its facets, with f_j supported by $\langle a_j, x \rangle = b_j$. The *slack matrix* of P is the $n \times m$ matrix S(P) with entries

$$S_{ij} = \langle a_j, v_i \rangle = b_j$$

$$S(P) = \begin{bmatrix} 0 & 0 & 1 & 2 & 2 & 1 \\ 1 & 0 & 0 & 1 & 2 & 2 \\ 2 & 1 & 0 & 0 & 1 & 2 \\ 2 & 2 & 1 & 0 & 0 & 1 \\ 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & 1 & 0 \end{bmatrix}$$

Polygons

Warm-up: Hexagons

The extension complexity of a hexagon \circ is either 5 or 6 . . .

- Every ≥ 5-polytope has ≥ 6 facets
- The only 4-polytope with 5 facets is the 4-simplex, its projections have ≤ 5 vertices
- The only 3-polytope with ≤ 5 facets and ≥ 6 vertices is the triangular prism

Warm-up: Hexagons

The extension complexity of a hexagon \Diamond is either 5 or 6 . . .

- Every ≥ 5-polytope has ≥ 6 facets
- The only 4-polytope with 5 facets is the 4-simplex, its projections have ≤ 5 vertices
- ► The only 3-polytope with ≤ 5 facets and ≥ 6 vertices is the *triangular* prism

... and $xc(\lozenge) = 5 \Leftrightarrow \lozenge$ is Desarguian

Warm-up: Hexagons

The extension complexity of a hexagon \circ is either 5 or 6 . . .

- Every ≥ 5-polytope has ≥ 6 facets
- The only 4-polytope with 5 facets is the 4-simplex, its projections have ≤ 5 vertices
- ► The only 3-polytope with ≤ 5 facets and ≥ 6 vertices is the triangular prism

... and $xc(\bigcirc) = 5 \Leftrightarrow \bigcirc$ is Desarguian

Theorem (Ben-Tal-Nemirovski 2001)

Let P be a regular n-gon, then $xc(P) = \Theta(\log(n))$

Theorem (Ben-Tal-Nemirovski 2001)

Let P be a regular n-gon, then $xc(P) = \Theta(\log(n))$

$$xc(P) = \Omega(\log(n))$$

Theorem (Ben-Tal-Nemirovski 2001)

Let P be a regular n-gon, then $xc(P) = \Theta(\log(n))$

$$xc(P) = \Omega(\log(n))$$

If $P = \pi(Q)$, the preimage of each face of P is a face of Q . A polytope with m facets has $\leq 2^m$ faces.

$$xc(P) = \mathcal{O}(\log(n))$$

Theorem (Ben-Tal-Nemirovski 2001)

Let P be a regular n-gon, then $xc(P) = \Theta(\log(n))$

$$xc(P) = \Omega(\log(n))$$

If $P = \pi(Q)$, the preimage of each face of P is a face of Q . A polytope with m facets has $\leq 2^m$ faces.

$$xc(P) = \mathcal{O}(\log(n))$$

Theorem (Ben-Tal-Nemirovski 2001)

Let P be a regular n-gon, then $xc(P) = \Theta(\log(n))$

$$xc(P) = \Omega(\log(n))$$

$$xc(P) = \mathcal{O}(\log(n))$$

Theorem (Ben-Tal-Nemirovski 2001)

Let P be a regular n-gon, then $xc(P) = \Theta(\log(n))$

$$xc(P) = \Omega(\log(n))$$

$$xc(P) = \mathcal{O}(\log(n))$$

Theorem (Ben-Tal-Nemirovski 2001)

Let P be a regular n-gon, then $xc(P) = \Theta(\log(n))$

$$xc(P) = \Omega(\log(n))$$

$$xc(P) = \mathcal{O}(\log(n))$$

Worst-case polygons

Question (Beasley and Laffey 2009)

Are there, for each $n \ge 3$, n-gons with extension complexity n?

Worst-case polygons

Question (Beasley and Laffey 2009)

Are there, for each $n \ge 3$, n-gons with extension complexity n?

Let's try heptagons...

Worst-case polygons

Question (Beasley and Laffey 2009)

Are there, for each $n \ge 3$, n-gons with extension complexity n?

Let's try heptagons...

Can we do this for every heptagon?

No... but at least for some rotation?

Yes! Otherwise, we get a realization of this *non-strechable* arrangement!

Theorem (Shitov 2013, P.-Pfeifle 2014)

Every heptagon has extension complexity 6.

Theorem (Shitov 2013, P.-Pfeifle 2014)

Every heptagon has extension complexity 6.

Corollary

Any n-gon P with $n \ge 7$ is a projection of a $(2 + \lfloor \frac{n}{7} \rfloor)$ -dimensional polytope with at most $\lceil \frac{6n}{7} \rceil$ facets. Hence,

$$xc(P) \le \left\lceil \frac{6n}{7} \right\rceil$$

Theorem (Shitov 2013, P.-Pfeifle 2014)

Every heptagon has extension complexity 6.

Corollary

Any n-gon P with $n \ge 7$ is a projection of a $(2 + \lfloor \frac{n}{7} \rfloor)$ -dimensional polytope with at most $\lceil \frac{6n}{7} \rceil$ facets. Hence,

$$xc(P) \le \left\lceil \frac{6n}{7} \right\rceil$$

Theorem (Shitov 2015)

If P is an n-gon with n large enough, then $xc(P) \leq \frac{25n}{\sqrt{\ln \ln \ln \ln \ln \ln \ln n}}$

Polytopes with few vertices or facets

Polytopes with few vertices (or facets)

Goal: Study extension complexity of d-polytopes with few vertices/facets $(d+1+\alpha)$ for fixed (small) α). In particular, d-polytopes with d+4 vertices/facets

- Motivation 1: Produce high-dimensional (interesting) examples. d-polytopes with d+4 vertices are Sturmfels's "threshold for counterexamples": Many combinatorial types, intricate realization spaces
- Motivation 2: If there was an α such that each d-polytope with $d+1+\alpha$ vertices has $xc \le d+\alpha$, it would provide non-trivial upper bounds for xc with respect to the number of vertices...

Generic polytopes

Theorem (P. 2016)

A generic d-polytope P with $d+1+\alpha$ facets has extension complexity

$$xc(P) \ge 2\sqrt{d(n-1)} - d + 1$$

Generic polytopes

Theorem (P. 2016)

A generic d-polytope P with $d+1+\alpha$ facets has extension complexity

$$xc(P) \ge 2\sqrt{d(n-1)} - d + 1$$

Generic polytopes

Theorem (P. 2016)

A generic d-polytope P with $d+1+\alpha$ facets has extension complexity

$$xc(P) \ge 2\sqrt{d(n-1)} - d + 1$$

$$\Rightarrow$$
 A generic P has $xc(P) \ge \min_{D} \frac{(D+1)(D-d)+nd}{D} = 2\sqrt{nd-d}-d+1$

Generic polytopes with few vertices

Corollary

For any $d > \left(\frac{\alpha-1}{2}\right)^2$ there are d-polytopes with $d+1+\alpha$ vertices/facets with extension complexity $d+1+\alpha$

Theorem (P. 2016)

Let P be a d-polytope with d+4 vertices, then

- 1. xc(P) = d + 2 if and only if P has d + 2 facets.
- 2. xc(P) = d + 3 if and only if:
 - 2.1 P has d+3 facets, or
 - 2.2 $P = \pi(Q)$, where $Q \cong \operatorname{pyr}_{d-2}(\Delta_1 \times \Delta_2)$ for some affine projection π . In this case, either
 - 2.2.1 $P = pyr_k(Q)$ where Q is a Desarguian hexagon (a hexagon with xc(Q) = 5), or
 - 2.2.2 P has a subset of 6 vertices forming a triangular prism.
- 3. xc(P) = d + 4 otherwise.

Theorem (P. 2016)

Let P be a d-polytope with d+4 vertices, then

- 1. xc(P) = d + 2 if and only if P has d + 2 facets. Combinatorial condition, 1 combinatorial type
- 2. xc(P) = d + 3 if and only if:
 - 2.1 P has d+3 facets, or Combinatorial condition, ≤ 8 combinatorial types
 - 2.2 $P = \pi(Q)$, where $Q \cong \operatorname{pyr}_{d-2}(\Delta_1 \times \Delta_2)$ for some affine projection π . In this case, either
 - 2.2.1 $P = \operatorname{pyr}_k(Q)$ where Q is a Desarguian hexagon (a hexagon with $\operatorname{xc}(Q) = 5$), or Geometric condition, 1 combinatorial type
 - 2.2.2 P has a subset of 6 vertices forming a triangular prism. Geometric condition, $\theta(d^2)$ combinatorial types
- 3. xc(P) = d + 4 otherwise. Superexponentially many, $\geq d^{d(1/2-o(1))}$ combinatorial types

Theorem (P. 2016)

 $\exists D(\alpha, \beta)$ such that every d-polytope with $\leq d+1+\alpha$ vertices, $\leq d+1+\alpha$ facets and $d > D(\alpha, \beta)$ is a pyramid.

Theorem (P. 2016)

 $\exists D(\alpha, \beta)$ such that every d-polytope with $\leq d+1+\alpha$ vertices, $\leq d+1+\alpha$ facets and $d > D(\alpha, \beta)$ is a pyramid.

Corollary

For fixed α , β , the number of combinatorial types of d-polytopes with $\leq d+1+\alpha$ vertices and $\leq d+1+\alpha$ facets is bounded by a constant independent of d.

Theorem (P. 2016)

 $\exists \ D(\alpha, \beta)$ such that every d-polytope with $\leq d+1+\alpha$ vertices, $\leq d+1+\alpha$ facets and $d > D(\alpha, \beta)$ is a pyramid.

Proof.

Theorem (P. 2016)

 $\exists \ D(\alpha, \beta)$ such that every d-polytope with $\leq d+1+\alpha$ vertices, $\leq d+1+\alpha$ facets and $d > D(\alpha, \beta)$ is a pyramid.

Proof.

Theorem (Marcus 1981)

 $\exists f(\alpha)$ such that for $d > f(\alpha)$ every d-polytope with $\leq d+1+\alpha$ vertices has a vertex adjacent to all the other vertices.

Theorem (P. 2016)

 $\exists D(\alpha, \beta)$ such that every d-polytope with $\leq d+1+\alpha$ vertices, $\leq d+1+\alpha$ facets and $d > D(\alpha, \beta)$ is a pyramid.

Proof.

Theorem (Marcus 1981)

 $\exists f(\alpha)$ such that for $d > f(\alpha)$ every d-polytope with $\leq d+1+\alpha$ vertices has a vertex adjacent to all the other vertices.

By induction on β . Since $d > D(\alpha, \beta) \ge f(\alpha)$, $\exists v$ adjacent to all the other vertices.

If there is only one facet non-adjacent to $v\Rightarrow P$ is a pyramid. Otherwise, the *vertex-figure* P/v has $(d-1)+\alpha+1$ vertices and $<(d-1)+\beta+1$ facets. By induction, P/v is a pyramid $\Rightarrow P$ is a pyramid.

Non-pyramidal d-polytopes with d+4 vertices and d+3 facets

Non-pyramidal d-polytopes with d+4 vertices and d+3 facets

Merci beaucoup!