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Extension complexity

A polytope P in RY is the convex hull of
finitely many points

Its faces are intersections with supporting
hyperplanes. Faces of dimensions 0 and
d—1 are vertices and facets, respectively

An extended formulation of P is a polytope
that can be linarly projected onto P

The extension complexity xc(P) is the
minimal number of facets of an extended
formulation
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Motivation: linear programming

If 1(Q) =P, and Q has much fewer facets than P, then it is more efficient
to optimize over Q than over P...

» Swart 80’s claims that P = NP because the TSP-polytope (associated
to the Travelling Salesman Problem) has a polynomial size extension

» Yannakakis 1991: Every symmetric extended formulation of
TSP-polytope has exponential size (so Swart’s proof was wrong)

» Kaibel, Pashkovich and Theis 2010: symmmetry matters

» Fiorini, Massar, Pokutta, Tiwary and de Wolf 2015: the extension
complexity of the TSP-polytope is exponential



Nonnegative rank

The nonnegative rank of the nonnegative n x m matrix S is the smallest k
such that there are nonnegative n x k and kK x m matrices A and B such
that

S—A-B
00122 1] [1L0OT10
1001 2 2 0011082(1)%(1)8
210012 fo1200 (220008 20
221001 o010 1|go221
122100 (10001752 2"
012210 |21000



Nonnegative rank

Theorem (Yannakakis '91)

The extension complexity of P coincides with the nonnegative rank of S(P)

Let vi,...,Vvn be the vertices of P, fi, ..., fy its facets, with f; supported
by (aj, x) = bj. The slack matrix of P is the n x m matrix S(P) with entries
Sij={aj, vi) =bj

0O 01 2 21

1 00 1 2 2

21 0 0 1 2

SP=12 2 10 0 1

1 2 2 1 00

01 2 2 10
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Warm-up: Hexagons

The extension complexity of a hexagon ¢ is either50r6...

» Every > 5-polytope has > 6 facets

» The only 4-polytope with 5 facets is the 4-simplex, its projections
have < 5 vertices

» The only 3-polytope with <5 facets and > 6 vertices is the triangular
prism
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Regular n-gons

Theorem (Ben-Tal-Nemirovski 2001)
Let P be a regular n-gon, then xc(P) = ©(log(n))
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Worst-case heptagons

Can we do this for every heptagon?

No... but at least for some rotation?



Worst-case heptagons

Yes! Otherwise, we get a realization of this non-strechable arrangement!
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Theorem (Shitov 2013, P.-Pfeifle 2014)
Every heptagon has extension complexity 6.
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Worst-case heptagons

Theorem (Shitov 2013, P.-Pfeifle 2014)
Every heptagon has extension complexity 6.

Corollary

Any n-gon P with n > 7 is a projection of a (2 +| 5 |)-dimensional polytope
with at most [67”] facets. Hence,

Xc(P) < [67n'|

Theorem (Shitov 2015)

f : 25n
If P is an n-gon with n large enough, then xc(P) < TR
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Polytopes with few vertices (or facets)

Goal: Study extension complexity of d-polytopes with few vertices/facets
(d+ 1+ o for fixed (small) a).
In particular, d-polytopes with d + 4 vertices/facets

Motivation 1: Produce high-dimensional (interesting) examples.
d-polytopes with d + 4 vertices are Sturmfels’s
“threshold for counterexamples”:
Many combinatorial types, intricate realization spaces

Motivation 2: If there was an a such that each d-polytope with d+ 1+ o
vertices has xc < d + a, it would provide non-trivial upper
bounds for xc with respect to the number of vertices...



Generic polytopes

Theorem (P. 2016)
A generic d-polytope P with d + 1 + a facets has extension complexity

Xc(P)=2yd(n—1)—d+1

n1(P)

D-polytopes with N facets
dim > (D + 1)(D — d)

dim=N-D

d-polytopes with n facets
dim=n-d
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Generic polytopes

Theorem (P. 2016)
A generic d-polytope P with d + 1 + a facets has extension complexity

Xc(P)=2yd(n—1)—d+1

7 1(P)

D-polytopes with N facets
dim > (D + 1)(D — d)

dim=N-D

d-polytopes with n facets
dim=n-d

m(CR)

dim < DN — (D +1)(D —d)

= A generic P has xc(P) = minp w =2v/nd—d—-d+1




Generic polytopes with few vertices

Corollary

2
For any d > (“%1) there are d-polytopes with d + 1 + o vertices/facets

with extension complexity d +1 + a



d-polytopes with d + 4 vertices

Theorem (P. 2016)

Let P be a d-polytope with d + 4 vertices, then
1. xc(P)=d+ 2 if and only if P has d + 2 facets.

2. xc(P) =d+ 3 if and only if:
2.1 P has d+ 3 facets, or

2.2 P=mn(0Q), where Q = pyry_>(A1 x Ap) for some affine projection .
In this case, either

2.2.1 P=pyr(Q) where Q is a Desarguian hexagon (a hexagon with xc(Q) =5), or

2.2.2 P has a subset of 6 vertices forming a triangular prism.

3. xc(P) = d + 4 otherwise.



d-polytopes with d + 4 vertices

Theorem (P. 2016)

Let P be a d-polytope with d + 4 vertices, then

1.

2.

Xc(P) =d+ 2 if and only if P has d + 2 facets.
Combinatorial condition, 1 combinatorial type
Xc(P) = d+ 3 if and only if:

2.1 P has d+ 3 facets, or
Combinatorial condition, < 8 combinatorial types
2.2 P=mn(0Q), where Q = pyry_>(A1 x Ap) for some affine projection .
In this case, either
2.2.1 P=pyr(Q) where Q is a Desarguian hexagon (a hexagon with xc(Q) =5), or
Geometric condition, 1 combinatorial type

2.2.2 P has a subset of 6 vertices forming a triangular prism.
Geometric condition, 8(d?) combinatorial types

. XCc(P) = d + 4 otherwise.

Superexponentially many, > d9(1/2=0(1)) combinatorial types



There are few polytopes
with few vertices and few facets

Theorem (P. 2016)

3 D(a, B) such that every d-polytope with < d+ 1+ a vertices, <d+1+a
facets and d > D(a, B) is a pyramid.
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Theorem (P. 2016)

3 D(a, B) such that every d-polytope with <d+ 1+ a vertices, <d+1+a
facets and d > D(a, B) is a pyramid.

Corollary

For fixed a, B, the number of combinatorial types of d-polytopes with
<d+1+avertices and < d+ 1+ o facets is bounded by a constant
independent of d.
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There are few polytopes
with few vertices and few facets

Theorem (P. 2016)

3 D(a, B) such that every d-polytope with < d+ 1+ a vertices, <d+1+a
facets and d > D(a, B) is a pyramid.

Proof.

Theorem (Marcus 1981)

3 f(a) such that for d > f(a) every d-polytope with < d+1+ a
vertices has a vertex adjacent to all the other vertices.

By induction on @. Since d > D(a, 8) = f(a), Av adjacent to all the other

vertices.
v v

P/v

O

If there is only one facet non-adjacent to v = P is a pyramid.
Otherwise, the vertex-figure P/v has (d— 1)+ a + 1 vertices and
< (d—1)+ B+ 1 facets. By induction, P/v is a pyramid = P is a pyramid.



Non-pyramidal d-polytopes with d+4
vertices and d+3 facets
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Merci beaucoup!
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