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Extension complexity

A polytope P in Rd is the convex hull of
finitely many points

Its faces are intersections with supporting
hyperplanes. Faces of dimensions 0 and
d− 1 are vertices and facets, respectively

An extended formulation of P is a polytope
that can be linarly projected onto P

The extension complexity xc(P) is the
minimal number of facets of an extended
formulation

dim +1 ≤ xc(P) ≤min(# vertices P,# facets P)
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Motivation: linear programming

If π(Q) = P, and Q has much fewer facets than P, then it is more efficient
to optimize over Q than over P...

É Swart 80’s claims that P = NP because the TSP-polytope (associated
to the Travelling Salesman Problem) has a polynomial size extension

É Yannakakis 1991: Every symmetric extended formulation of
TSP-polytope has exponential size (so Swart’s proof was wrong)

É Kaibel, Pashkovich and Theis 2010: symmmetry matters

É Fiorini, Massar, Pokutta, Tiwary and de Wolf 2015: the extension
complexity of the TSP-polytope is exponential



Nonnegative rank

The nonnegative rank of the nonnegative n×m matrix S is the smallest k
such that there are nonnegative n× k and k ×m matrices A and B such
that

S = A · B
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Nonnegative rank

Theorem (Yannakakis ’91)

The extension complexity of P coincides with the nonnegative rank of S(P)

Let v1, . . . , vn be the vertices of P, f1, . . . , fm its facets, with fj supported
by 〈aj, x〉 = bj. The slack matrix of P is the n×m matrix S(P) with entries

Sij = 〈aj, vi〉 = bj
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Polygons



Warm-up: Hexagons

The extension complexity of a hexagon 9 is either 5 or 6 . . .

É Every ≥ 5-polytope has ≥ 6 facets
É The only 4-polytope with 5 facets is the 4-simplex, its projections

have ≤ 5 vertices
É The only 3-polytope with ≤ 5 facets and ≥ 6 vertices is the triangular

prism

. . . and xc(9) = 5⇔ 9 is Desarguian
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Regular n-gons

Theorem (Ben-Tal-Nemirovski 2001)

Let P be a regular n-gon, then xc(P) = Θ(log(n))

xc(P) = Ω(log(n))
If P = π(Q), the preimage of each face of P is a face of Q. A
polytope with m facets has ≤ 2m faces.

xc(P) = O(log(n))
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Worst-case polygons

Question (Beasley and Laffey 2009)

Are there, for each n ≥ 3, n-gons with extension complexity n?

Let’s try heptagons...
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Worst-case heptagons

Can we do this for every heptagon?

No... but at least for some rotation?



Worst-case heptagons

Yes! Otherwise, we get a realization of this non-strechable arrangement!



Worst-case heptagons

Theorem (Shitov 2013, P.-Pfeifle 2014)

Every heptagon has extension complexity 6.

Corollary

Any n-gon P with n ≥ 7 is a projection of a (2 +
�n

7

�

)-dimensional polytope

with at most
 

6n
7

£

facets. Hence,

xc(P) ≤
�

6n

7

�

Theorem (Shitov 2015)

If P is an n-gon with n large enough, then xc(P) ≤ 25np
ln ln ln ln ln lnn
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Polytopes with few vertices or facets



Polytopes with few vertices (or facets)

Goal: Study extension complexity of d-polytopes with few vertices/facets
(d + 1 + α for fixed (small) α).
In particular, d-polytopes with d + 4 vertices/facets

Motivation 1: Produce high-dimensional (interesting) examples.
d-polytopes with d + 4 vertices are Sturmfels’s
“threshold for counterexamples”:
Many combinatorial types, intricate realization spaces

Motivation 2: If there was an α such that each d-polytope with d + 1 + α
vertices has xc ≤ d + α, it would provide non-trivial upper
bounds for xc with respect to the number of vertices...



Generic polytopes

Theorem (P. 2016)

A generic d-polytope P with d + 1 + α facets has extension complexity

xc(P) ≥ 2
Æ

d(n− 1)− d + 1

⇒ A generic P has xc(P) ≥minD
(D+1)(D−d)+nd

D = 2
p

nd− d− d + 1
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Generic polytopes with few vertices

Corollary

For any d >
�

α−1
2

�2
there are d-polytopes with d + 1 + α vertices/facets

with extension complexity d + 1 + α



d-polytopes with d+ 4 vertices

Theorem (P. 2016)

Let P be a d-polytope with d + 4 vertices, then

1. xc(P) = d + 2 if and only if P has d + 2 facets.

Combinatorial condition, 1 combinatorial type

2. xc(P) = d + 3 if and only if:

2.1 P has d + 3 facets, or

Combinatorial condition, ≤ 8 combinatorial types

2.2 P = π(Q), where Q ∼= pyrd−2(∆1 ×∆2) for some affine projection π.
In this case, either

2.2.1 P = pyrk(Q) where Q is a Desarguian hexagon (a hexagon with xc(Q) = 5), or

Geometric condition, 1 combinatorial type

2.2.2 P has a subset of 6 vertices forming a triangular prism.

Geometric condition, θ(d2) combinatorial types

3. xc(P) = d + 4 otherwise.

Superexponentially many, ≥ dd(1/2−o(1)) combinatorial types
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There are few polytopes
with few vertices and few facets

Theorem (P. 2016)

∃ D(α, β) such that every d-polytope with ≤ d + 1 + α vertices, ≤ d + 1 + α
facets and d > D(α, β) is a pyramid.

Proof.

Theorem (Marcus 1981)

∃ f (α) such that for d > f (α) every d-polytope with ≤ d + 1 + α
vertices has a vertex adjacent to all the other vertices.

By induction on β. Since d > D(α, β) ≥ f (α), ∃v adjacent to all the other
vertices.

If there is only one facet non-adjacent to v ⇒ P is a pyramid.
Otherwise, the vertex-figure P/v has (d− 1) + α + 1 vertices and
< (d− 1) + β+ 1 facets. By induction, P/v is a pyramid ⇒ P is a pyramid.
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Non-pyramidal d-polytopes with d+4
vertices and d+3 facets

Merci beaucoup!
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