On the extension complexity of polytopes

Arnaud Padrol
Insitut de Mathématiques de Jussieu - Paris Rive Gauche
UPMC Paris 06

Journées nationales GDR IM 2017
15/03/2017
A polytope P in \mathbb{R}^d is the convex hull of finitely many points. Its faces are intersections with supporting hyperplanes. Faces of dimensions 0 and $d - 1$ are vertices and facets, respectively.

An extended formulation of P is a polytope that can be linearly projected onto P.

The extension complexity $\text{xc}(P)$ is the minimal number of facets of an extended formulation.
A polytope P in \mathbb{R}^d is the convex hull of finitely many points.

Its faces are intersections with supporting hyperplanes. Faces of dimensions 0 and $d-1$ are vertices and facets, respectively.

An extended formulation of P is a polytope that can be linearly projected onto P.

The extension complexity $xc(P)$ is the minimal number of facets of an extended formulation.

$$ \dim + 1 \leq xc(P) \leq \min(\# \text{ vertices } P, \# \text{ facets } P) $$
Motivation: linear programming

If \(\pi(Q) = P \), and \(Q \) has much fewer facets than \(P \), then it is more **efficient** to optimize over \(Q \) than over \(P \)...

- Swart 80’s claims that \(P = NP \) because the TSP-polytope (associated to the *Travelling Salesman Problem*) has a polynomial size extension

- Yannakakis 1991: Every **symmetric** extended formulation of TSP-polytope has exponential size (**so Swart’s proof was wrong**)

- Kaibel, Pashkovich and Theis 2010: symmetry matters

- Fiorini, Massar, Pokutta, Tiwary and de Wolf 2015: the extension complexity of the TSP-polytope is exponential
The \textit{nonnegative rank} of the nonnegative $n \times m$ matrix S is the smallest k such that there are nonnegative $n \times k$ and $k \times m$ matrices A and B such that

$$S = A \cdot B$$

\[
\begin{bmatrix}
0 & 0 & 1 & 2 & 2 & 1 \\
1 & 0 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 0 & 1 \\
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
2 & 1 & 0 & 0 & 0
\end{bmatrix}
\cdot \begin{bmatrix}
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 & 1 \\
1 & 2 & 1 & 0 & 0 & 0
\end{bmatrix}
\]
Theorem (Yannakakis ’91)

The extension complexity of P coincides with the nonnegative rank of $S(P)$.

Let v_1, \ldots, v_n be the vertices of P, f_1, \ldots, f_m its facets, with f_j supported by $\langle a_j, x \rangle = b_j$. The slack matrix of P is the $n \times m$ matrix $S(P)$ with entries

$$S_{ij} = \langle a_j, v_i \rangle = b_j$$

$$S(P) = \begin{bmatrix} 0 & 0 & 1 & 2 & 2 & 1 \\ 1 & 0 & 0 & 1 & 2 & 2 \\ 2 & 1 & 0 & 0 & 1 & 2 \\ 2 & 2 & 1 & 0 & 0 & 1 \\ 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & 1 & 0 \end{bmatrix}$$
Polygons
The extension complexity of a hexagon \diamond is either 5 or 6 . . .

- Every ≥ 5-polytope has ≥ 6 facets
- The only 4-polytope with 5 facets is the 4-simplex, its projections have ≤ 5 vertices
- The only 3-polytope with ≤ 5 facets and ≥ 6 vertices is the *triangular prism*
Warm-up: Hexagons

The extension complexity of a hexagon \diamond is either 5 or 6 . . .

- Every ≥ 5-polytope has ≥ 6 facets
- The only 4-polytope with 5 facets is the 4-simplex, its projections have ≤ 5 vertices
- The only 3-polytope with ≤ 5 facets and ≥ 6 vertices is the **triangular prism**

. . . and $\text{xc}(\diamond) = 5 \iff \diamond$ is Desarguian
Warm-up: Hexagons

The extension complexity of a hexagon \odot is either 5 or 6 …

- Every ≥ 5-polytope has ≥ 6 facets
- The only 4-polytope with 5 facets is the 4-simplex, its projections have ≤ 5 vertices
- The only 3-polytope with ≤ 5 facets and ≥ 6 vertices is the **triangular prism**

… and $xc(\odot) = 5 \iff \odot$ is **Desarguian**
Regular n-gons

Theorem (Ben-Tal-Nemirovski 2001)

Let P be a regular n-gon, then $xc(P) = \Theta(\log(n))$
Theorem (Ben-Tal-Nemirovski 2001)

Let P be a regular n-gon, then $xc(P) = \Theta(\log(n))$

If $P = \pi(Q)$, the preimage of each face of P is a face of Q. A polytope with m facets has $\leq 2^m$ faces.
Theorem (Ben-Tal-Nemirovski 2001)

Let P be a regular n-gon, then $xc(P) = \Theta(\log(n))$

$x_c(P) = \Omega(\log(n))$

If $P = \pi(Q)$, the preimage of each face of P is a face of Q. A polytope with m facets has $\leq 2^m$ faces.

$x_c(P) = O(\log(n))$
Let P be a regular n-gon, then $\text{xc}(P) = \Theta(\log(n))$

$\text{xc}(P) = \Omega(\log(n))$

If $P = \pi(Q)$, the preimage of each face of P is a face of Q. A polytope with m facets has $\leq 2^m$ faces.

$\text{xc}(P) = \mathcal{O}(\log(n))$
Regular n-gons

Theorem (Ben-Tal-Nemirovski 2001)

Let \(P \) be a regular \(n \)-gon, then \(xc(P) = \Theta(\log(n)) \)

\[
xc(P) = \Omega(\log(n))
\]
If \(P = \pi(Q) \), the preimage of each face of \(P \) is a face of \(Q \). A polytope with \(m \) facets has \(\leq 2^m \) faces.

\[
xc(P) = \mathcal{O}(\log(n))
\]
Regular n-gons

Theorem (Ben-Tal-Nemirovski 2001)

Let P be a regular n-gon, then $\text{xc}(P) = \Theta(\log(n))$

$\text{xc}(P) = \Omega(\log(n))$

If $P = \pi(Q)$, the preimage of each face of P is a face of Q. A polytope with m facets has $\leq 2^m$ faces.

$\text{xc}(P) = O(\log(n))$
Regular n-gons

Theorem (Ben-Tal-Nemirovski 2001)

Let P be a regular n-gon, then $\text{xc}(P) = \Theta(\log(n))$

$\text{xc}(P) = \Omega(\log(n))$

If $P = \pi(Q)$, the preimage of each face of P is a face of Q. A polytope with m facets has $\leq 2^m$ faces.

$\text{xc}(P) = \mathcal{O}(\log(n))$
Worst-case polygons

<table>
<thead>
<tr>
<th>Question (Beasley and Laffey 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are there, for each $n \geq 3$, n-gons with extension complexity n?</td>
</tr>
</tbody>
</table>
Question (Beasley and Laffey 2009)

Are there, for each $n \geq 3$, n-gons with extension complexity n?

Let’s try heptagons...
Worst-case polygons

Question (Beasley and Laffey 2009)

Are there, for each \(n \geq 3\), \(n\)-gons with extension complexity \(n\)?

Let’s try heptagons...
Worst-case heptagons

Can we do this for every heptagon?

No... but at least for some rotation?
Worst-case heptagons

Yes! Otherwise, we get a realization of this *non-stretchable* arrangement!
Theorem (Shitov 2013, P.-Pfeifle 2014)

Every heptagon has extension complexity 6.
Theorem (Shitov 2013, P.-Pfeifle 2014)

Every heptagon has extension complexity 6.

Corollary

*Any n-gon P with n ≥ 7 is a projection of a *(2 + ⌊ n/7 ⌋)*-dimensional polytope with at most ⌊ 6n/7 ⌋ facets. Hence,

\[xc(P) \leq \left\lfloor \frac{6n}{7} \right\rfloor \]
Worst-case heptagons

Theorem (Shitov 2013, P.-Pfeifle 2014)
Every heptagon has extension complexity 6.

Corollary
Any n-gon P with $n \geq 7$ is a projection of a $(2 + \lceil \frac{n}{7} \rceil)$-dimensional polytope with at most $\left\lceil \frac{6n}{7} \right\rceil$ facets. Hence,

$$xc(P) \leq \left\lceil \frac{6n}{7} \right\rceil$$

Theorem (Shitov 2015)
If P is an n-gon with n large enough, then $xc(P) \leq \frac{25n}{\sqrt{\ln \ln \ln \ln \ln n}}$
Polytopes with few vertices or facets
Goal: Study extension complexity of d-polytopes with few vertices/facets ($d + 1 + \alpha$ for fixed (small) α).
In particular, d-polytopes with $d + 4$ vertices/facets

Motivation 1: Produce high-dimensional (interesting) examples. d-polytopes with $d + 4$ vertices are Sturmfels’s “threshold for counterexamples”:
Many combinatorial types, intricate realization spaces

Motivation 2: If there was an α such that each d-polytope with $d + 1 + \alpha$ vertices has $xc \leq d + \alpha$, it would provide non-trivial upper bounds for xc with respect to the number of vertices...
A generic d-polytope P with $d + 1 + \alpha$ facets has extension complexity

$$xc(P) \geq 2\sqrt{d(n - 1)} - d + 1$$
A generic d-polytope P with $d + 1 + \alpha$ facets has extension complexity

$$xc(P) \geq 2\sqrt{d(n-1)} - d + 1$$
Theorem (P. 2016)

A generic d-polytope P with $d + 1 + \alpha$ facets has extension complexity

$$xc(P) \geq 2 \sqrt{d(n-1)} - d + 1$$

D-polytopes with N facets
$$\dim = N \cdot D$$

$\pi^{-1}(P)$
$$\dim \geq (D + 1)(D - d)$$

d-polytopes with n facets
$$\dim = n \cdot d$$

$\pi(P)$
$$\dim \leq DN - (D + 1)(D - d)$$

\Rightarrow A generic P has $xc(P) \geq \min_D \frac{(D+1)(D-d)+nd}{D} = 2 \sqrt{nd-d-d+1}$
Corollary

For any $d > \left(\frac{\alpha - 1}{2}\right)^2$ there are d-polytopes with $d + 1 + \alpha$ vertices/facets with extension complexity $d + 1 + \alpha$
Theorem (P. 2016)

Let P be a d-polytope with $d + 4$ vertices, then

1. $xc(P) = d + 2$ if and only if P has $d + 2$ facets.

2. $xc(P) = d + 3$ if and only if:
 1. P has $d + 3$ facets, or
 2. $P = \pi(Q)$, where $Q \cong \text{pyr}_{d-2}(\Delta_1 \times \Delta_2)$ for some affine projection π. In this case, either
 1. $P = \text{pyr}_k(Q)$ where Q is a Desarguian hexagon (a hexagon with $xc(Q) = 5$), or
 2. P has a subset of 6 vertices forming a triangular prism.

3. $xc(P) = d + 4$ otherwise.
Theorem (P. 2016)

Let P be a d-polytope with $d + 4$ vertices, then

1. $xc(P) = d + 2$ if and only if P has $d + 2$ facets.
 Combinatorial condition, 1 combinatorial type

2. $xc(P) = d + 3$ if and only if:
 2.1 P has $d + 3$ facets, or
 Combinatorial condition, ≤ 8 combinatorial types
 2.2 $P = \pi(Q)$, where $Q \cong \text{pyr}_{d-2}(\Delta_1 \times \Delta_2)$ for some affine projection π.
 In this case, either
 2.2.1 $P = \text{pyr}_k(Q)$ where Q is a Desarguian hexagon (a hexagon with $xc(Q) = 5$), or
 Geometric condition, 1 combinatorial type
 2.2.2 P has a subset of 6 vertices forming a triangular prism.
 Geometric condition, $\theta(d^2)$ combinatorial types

3. $xc(P) = d + 4$ otherwise.
 Superexponentially many, $\geq d^{(1/2-o(1))}$ combinatorial types
There are few polytopes with few vertices and few facets

Theorem (P. 2016)

\[\exists D(\alpha, \beta) \text{ such that every } d\text{-polytope with } \leq d + 1 + \alpha \text{ vertices, } \leq d + 1 + \alpha \text{ facets and } d > D(\alpha, \beta) \text{ is a pyramid.} \]
There are few polytopes with few vertices and few facets

Theorem (P. 2016)

\[\exists D(\alpha, \beta) \text{ such that every } d\text{-polytope with } \leq d + 1 + \alpha \text{ vertices, } \leq d + 1 + \alpha \text{ facets and } d > D(\alpha, \beta) \text{ is a pyramid.} \]

Corollary

For fixed \(\alpha, \beta, \) the number of combinatorial types of \(d\)-polytopes with \(\leq d + 1 + \alpha \) vertices and \(\leq d + 1 + \alpha \) facets is bounded by a constant independent of \(d \).
There are few polytopes with few vertices and few facets

Theorem (P. 2016)

\[\exists D(\alpha, \beta) \text{ such that every } d \text{-polytope with } \leq d + 1 + \alpha \text{ vertices, } \leq d + 1 + \alpha \text{ facets and } d > D(\alpha, \beta) \text{ is a pyramid.} \]

Proof.
There are few polytopes with few vertices and few facets

<table>
<thead>
<tr>
<th>Theorem (P. 2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\exists D(\alpha, \beta)$ such that every d-polytope with $\leq d + 1 + \alpha$ vertices, $\leq d + 1 + \alpha$ facets and $d > D(\alpha, \beta)$ is a pyramid.</td>
</tr>
</tbody>
</table>

Proof.

<table>
<thead>
<tr>
<th>Theorem (Marcus 1981)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\exists f(\alpha)$ such that for $d > f(\alpha)$ every d-polytope with $\leq d + 1 + \alpha$ vertices has a vertex adjacent to all the other vertices.</td>
</tr>
</tbody>
</table>
There are few polytopes with few vertices and few facets

Theorem (P. 2016)

∃ $D(\alpha, \beta)$ such that every d-polytope with $\leq d + 1 + \alpha$ vertices, $\leq d + 1 + \alpha$ facets and $d > D(\alpha, \beta)$ is a pyramid.

Proof.

Theorem (Marcus 1981)

∃ $f(\alpha)$ such that for $d > f(\alpha)$ every d-polytope with $\leq d + 1 + \alpha$ vertices has a vertex adjacent to all the other vertices.

By induction on β. Since $d > D(\alpha, \beta) \geq f(\alpha)$, $\exists v$ adjacent to all the other vertices.

If there is only one facet non-adjacent to $v \Rightarrow P$ is a pyramid.
Otherwise, the vertex-figure P/v has $(d - 1) + \alpha + 1$ vertices and $< (d - 1) + \beta + 1$ facets. By induction, P/v is a pyramid $\Rightarrow P$ is a pyramid.
Non-pyramidal d-polytopes with d+4 vertices and d+3 facets
Non-pyramidal d-polytopes with d+4 vertices and d+3 facets

Merci beaucoup!