# Securing Finite Field Arithmetic in Embedded Systems

Emmanuel PROUFF

Safran Identity and Security

March 16, 2017



$$Z = S(X + k)$$
 with  $X = 0$  and  $k = 1$ .



$$Z = S(X + k)$$
 with  $X = 0$  and  $k = 1$ .







$$Z = S(X + k)$$
 with  $X = 0$  and  $k = 2$ .







$$Z = S(X + k)$$
 with  $X = 0$  and  $k = 3$ .







$$Z = S(X + k)$$
 with  $X = 0$  and  $k = 4$ .







$$Z = S(X + k)$$
 with  $X = 0$  and  $k \in \{1, 2, 3, 4\}$ .







#### Side Channel Attacks (SCA)

- Against each cryptosystem and each implementation, find the most efficient SCA.
  - ► Efficiency of an SCA?
  - ▶ Which attack parameters to improve?
  - ► SCA common trends?
  - ▶ Attacks *versus* Characterization!

#### Countermeasures

- For each cryptosystem, find efficient/effective countermeasures.
  - ▶ Formally define the fact that a countermeasure thwarts an SCA?
  - ▶ Which countermeasure for which SCA?
  - ▶ What makes a cryptosystem more vulnerable to SCA than another?



Introduction Adversary Game





$$L = \varphi(\mathbf{Z}) + \underbrace{\mathcal{N}}_{Noise}$$



$$L = \varphi(\mathbf{Z}) + \underbrace{\mathcal{N}}_{Noise}$$

• Core Idea: define mechanisms to increase the noise.



$$L = \varphi(\mathbf{Z}) + \underbrace{\mathcal{N}}_{Noise}$$

• Core Idea: define mechanisms to decrease the SNR.



$$L = \varphi(\mathbf{Z}) + \underbrace{\mathcal{N}}_{Noise}$$

- Core Idea: define mechanisms to decrease the SNR.
  - ▶ increase the noise variance.



$$L = \varphi(\mathbf{Z}) + \underbrace{\mathcal{N}}_{Noise}$$

- Core Idea: define mechanisms to decrease the SNR.
  - ▶ increase the noise variance.
  - force the adversary to himself decrease the SNR.



$$L = \varphi(\mathbf{Z}) + \underbrace{\mathcal{N}}_{Noise}$$

- Core Idea: define mechanisms to decrease the SNR.
  - increase the noise variance.
  - force the adversary to himself decrease the SNR.
- Secret Sharing: randomly split Z into d shares  $Z_1, ..., Z_d$ :











$$L = \varphi(\mathbf{Z}) + \underbrace{\mathcal{N}}_{Noise}$$

- Core Idea: define mechanisms to decrease the SNR.
  - increase the noise variance.
  - force the adversary to himself decrease the SNR.
- Secret Sharing: randomly split Z into d shares  $Z_1, ..., Z_d$ :

$$L_1 = \varphi(Z_1) + \mathcal{N}_1$$

$$L_2 = \varphi(Z_2) + \mathcal{N}_2$$

$$L_1 = \varphi(Z_1) + \mathcal{N}_1$$
  $L_2 = \varphi(Z_2) + \mathcal{N}_2$   $\cdots$   $L_d = \varphi(Z_d) + \mathcal{N}_d$ 

- $\triangleright$  all the  $L_i$  are needed to get information on Z!
- hence the adversary must combine all the  $L_i$
- lead to multiply the  $\mathcal{N}_i$  altogether and to merge information and noise in a complex way.



### Adversary Game

In the implementation, find d or less intermediate variables that jointly depend on a secret variable Z.

#### Developer Game

Translate (Compile?) an implementation into a new one defeating the adversary.

Implementation = sequence of elementary operations which read a memory location and write its result in another memory location.



■ First Issue: how to share sensitive data?



■ Second Issue: how to securely process on shared data?





- First Issue: how to share sensitive data?
- Related to:
  - secret sharing Shamir79
  - design of error correcting codes with large dual distance

etc.



- Second Issue: how to securely process on shared data?
- Related to:
  - secure multi-party computation
  - circuit processing in presence of leakage e.g.
  - efficient polynomial evaluation e.g.
  - etc.





- Linear Secret Sharing with parameters n and d:
  - ightharpoonup elements  $Z_i$  such that

$$Z = \sum_{i} Z_{i}$$

▶ no sub-family of d-1  $Z_i$  depends on Z.



- Linear Secret Sharing with parameters n and d:
  - ightharpoonup n elements  $Z_i$  such that

$$Z = \sum_{i} Z_{i}$$

- ▶ no sub-family of d-1  $Z_i$  depends on Z.
- Massey (1993):

designing an (n, d) linear secret sharing



building a code with length n+1 and dual distance d



- Linear Secret Sharing with parameters n and d:
  - ightharpoonup n elements  $Z_i$  such that

$$Z = \sum_{i} Z_{i}$$

- ▶ no sub-family of d-1  $Z_i$  depends on Z.
- Massey (1993):

designing an (n, d) linear secret sharing

building a code with length n+1 and dual distance d

■ Yes, interesting, but ... who cares?



- Linear Secret Sharing with parameters n and d:
  - ightharpoonup n elements  $Z_i$  such that

$$Z = \sum_{i} Z_{i}$$

- ▶ no sub-family of d-1  $Z_i$  depends on Z.
- Massey (1993):

designing an (n,d) linear secret sharing building a code with length n+1 and dual distance d

- Yes, interesting, but ... who cares?
  - gives a general framework to describe and analyse all linear sharing schemes



- Linear Secret Sharing with parameters n and d:
  - ightharpoonup n elements  $Z_i$  such that

$$Z = \sum_{i} Z_{i}$$

- ▶ no sub-family of d-1  $Z_i$  depends on Z.
- Massey (1993):

designing an (n, d) linear secret sharing  $\iff$  building a code with length n+1 and dual distance d

- Yes, interesting, but ... who cares?
  - gives a general framework to describe and analyse all linear sharing schemes
  - ▶ links our problems with those of a rich community



$$\begin{pmatrix} \mathbf{Z} & R_1 & \dots & R_{k-1} \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 & \alpha_{1,k} & \dots & \alpha_{1,n} \\ 0 & 1 & 0 & 0 & \alpha_{2,k} & \dots & \alpha_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 & \alpha_{k,k} & \dots & \alpha_{k,n} \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{Z} & Z_1 & \dots & Z_{k-1} & Z_k & \dots & Z_n \end{pmatrix}$$

$$\begin{pmatrix}
\mathbf{Z} & R_1 & \dots & R_{k-1}
\end{pmatrix} \times 
\begin{pmatrix}
\mathbf{Id}_k | M
\end{pmatrix}$$

$$= \begin{pmatrix}
\mathbf{Z} & Z_1 & \dots & Z_{k-1} & Z_k & \dots & Z_n
\end{pmatrix}$$

$$(Z \quad Z_1 \quad \dots \quad Z_n) \quad \times \quad \begin{pmatrix} \alpha_{1,k} & \dots & \dots & \alpha_{k,k} \\ \alpha_{1,k+1} & \dots & \dots & \alpha_{k,k+1} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{1,n} & \dots & \dots & \alpha_{k,n} \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

$$= \quad \begin{pmatrix} 0 & \dots & 0 \end{pmatrix}$$



Linear Sharing

$$\begin{pmatrix}
\mathbf{Z} & Z_1 & \dots & Z_n
\end{pmatrix} \times \begin{pmatrix}
\vec{H_1} & \vec{H_2} & \dots & \vec{H_k}
\end{pmatrix} \\
= \begin{pmatrix}
0 & 0 & \dots & 0
\end{pmatrix}$$



$$\begin{pmatrix}
\mathbf{Z} & Z_1 & \dots & Z_n
\end{pmatrix} \times \begin{pmatrix}
\mathbf{H}_1 & \mathbf{H}_2 & \dots & \mathbf{H}_k
\end{pmatrix} \\
= \begin{pmatrix}
0 & 0 & \dots & 0
\end{pmatrix}$$

 $\blacksquare$  implies for every  $i \in [1..k]$ :

$$Z = H_{i,0}^{-1} \sum_{j=1}^{n} Z_j \times H_{i,j}$$
.

where  $\vec{H}_i \doteq (H_{i,0}, \cdots, H_{i,n})^{\intercal}$ .



$$\begin{pmatrix}
\mathbf{Z} & Z_1 & \dots & Z_n
\end{pmatrix} \times \begin{pmatrix}
\mathbf{H}_1 & \mathbf{H}_2 & \dots & \mathbf{H}_k
\end{pmatrix} \\
= \begin{pmatrix}
0 & 0 & \dots & 0
\end{pmatrix}$$

■ implies for every  $i \in [1..k]$ :

$$\mathbf{Z} = H_{i,0}^{-1} \sum_{j=1}^{n} Z_j \times H_{i,j}$$
.

where  $\vec{H}_i \doteq (H_{i,0}, \cdots, H_{i,n})^{\mathsf{T}}$ .

■ masking/sharing order  $< \min_{(a_1, \dots, a_k) \in \mathbb{F}_2^k} \mathrm{HW}(\sum_i a_i \vec{H_i}) - 1$ 



$$\begin{pmatrix} \mathbf{Z} & Z_1 & \dots & Z_n \end{pmatrix} \times \begin{pmatrix} \mathbf{H}_1 & \mathbf{H}_2 & \dots & \mathbf{H}_k \end{pmatrix} \\
= \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$$

■ implies for every  $i \in [1..k]$ :

■ Linear Sharing = Encoding

$$Z = H_{i,0}^{-1} \sum_{j=1}^{n} Z_j \times H_{i,j}$$

where  $\vec{H}_i \doteq (H_{i,0}, \cdots, H_{i,n})^{\mathsf{T}}$ .

- masking/sharing order  $< \min_{(a_1, \dots, a_k) \in \mathbb{F}_2^k} \mathrm{HW}(\sum_i a_i \vec{H_i}) 1$
- Actually masking order=  $\min_{(a_1,\dots,a_k)\in\mathbb{F}_2^k} \mathrm{HW}(\sum_i a_i \vec{H_i}) 1$



■ Boolean Sharing: encoding with the matrix

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

implies k = n - 1.



■ Boolean Sharing: encoding with the matrix

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

implies k = n - 1.

- Shamir's secret Sharing:
  - generate a random degree-d polynomial P(X) such that P(0) = Z
  - build the  $Z_i$  such that  $Z_i = P(\alpha_i)$  for  $n \geq 2d$  different public values  $\alpha_i$ .



■ Boolean Sharing: encoding with the matrix

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

implies k = n - 1.

- Shamir's secret Sharing:
  - generate a random degree-d polynomial P(X) such that P(0) = Z
  - build the  $Z_i$  such that  $Z_i = P(\alpha_i)$  for  $n \geq 2d$  different public values  $\alpha_i$ .
- ... amounts to define a Reed-Solomon code with parameters  $[n+1,d+1,\cdot]$  McElieceSarwate81.



■ Boolean Sharing: encoding with the matrix

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

implies k = n - 1.

- Shamir's secret Sharing:
  - generate a random degree-d polynomial P(X) such that P(0) = Z
  - build the  $Z_i$  such that  $Z_i = P(\alpha_i)$  for  $n \geq 2d$  different public values  $\alpha_i$ .
- ... amounts to define a Reed-Solomon code with parameters  $[n+1,d+1,\cdot]$  McElieceSarwate81.
- $\blacksquare$  Main issue: minimize n for a given d.



■ Securing elementary Operations:



- Securing elementary Operations:
- Original idea by Ishai-Sahai-Wagner: limited to GF(2)



- Securing elementary Operations:
- Original idea by Ishai-Sahai-Wagner: limited to GF(2)
- Extended to any field in RivainProuff2010 and





- Securing elementary Operations:
- Original idea by Ishai-Sahai-Wagner: limited to GF(2)
- Extended to any field in RivainProuff2010 and
- Based on Boolean Sharing:  $Z = Z_0 \oplus Z_1 \oplus ... Z_d$





- Securing elementary Operations:
- Original idea by Ishai-Sahai-Wagner: limited to GF(2)
- Extended to any field in RivainProuff2010 and
- Based on Boolean Sharing:  $Z = Z_0 \oplus Z_1 \oplus \dots Z_d$
- Securing linear functions L:

$$\begin{array}{cccc} Z_0 & Z_1 & \cdots & Z_d \\ \downarrow & \downarrow & \downarrow & \downarrow \\ L(Z_0) & L(Z_1) & \cdots & L(Z_d) \end{array}$$





- Securing elementary Operations:
- Original idea by Ishai-Sahai-Wagner: limited to GF(2)
- Extended to any field in RivainProuff2010 and
- Based on Boolean Sharing:  $Z = Z_0 \oplus Z_1 \oplus \dots Z_d$
- Securing linear functions L:





- Original idea by Ishai-Sahai-Wagner: limited to GF(2)
- Extended to any field in RivainProuff2010 and
- Based on Boolean Sharing:  $Z = Z_0 \oplus Z_1 \oplus ... Z_d$
- Securing linear functions L:

■ Securing elementary Operations:

■ Much more difficult for non-linear functions (i.e. multiplication)



- ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
- Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$



- ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
- Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$



- ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
- Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

Illustration of ISW scheme for d=2:

$$\begin{pmatrix} a_0b_0 & a_0b_1 & a_0b_2 \\ a_1b_0 & a_1b_1 & a_1b_2 \\ a_2b_0 & a_2b_1 & a_2b_2 \end{pmatrix}$$



- ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
- Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

Illustration of ISW scheme for d=2:

$$\begin{pmatrix} a_0b_0 & a_0b_1 & a_0b_2 \\ a_1b_0 & a_1b_1 & a_1b_2 \\ a_2b_0 & a_2b_1 & a_2b_2 \end{pmatrix} \oplus \begin{pmatrix} r_{0,0} & r_{0,1} & r_{0,2} \\ r_{1,0} & r_{1,1} & r_{1,2} \\ r_{2,0} & r_{2,1} & r_{2,2} \end{pmatrix}$$

where the  $r_{i,j}$  are a sharing of 0.



- ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
- Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

■ Illustration of ISW scheme for d = 2:

$$\begin{pmatrix} a_0b_0 \oplus r_{0,0} & a_0b_1 \oplus r_{0,1} & a_0b_2 \oplus r_{0,2} \\ a_1b_0 \oplus r_{1,0} & a_1b_1 \oplus r_{1,1} & a_1b_2 \oplus r_{1,2} \\ a_2b_0 \oplus r_{2,0} & a_2b_1 \oplus r_{2,1} & a_2b_2 \oplus r_{2,2} \end{pmatrix}$$



#### ■ Securing Multiplication IshaiSahaiWagner2003:

- ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
- Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

Illustration of ISW scheme for d=2:

$$\begin{pmatrix} a_0b_0 \oplus r_{0,0} & a_0b_1 \oplus r_{0,1} & a_0b_2 \oplus r_{0,2} \\ a_1b_0 \oplus r_{1,0} & a_1b_1 \oplus r_{1,1} & a_1b_2 \oplus r_{1,2} \\ a_2b_0 \oplus r_{2,0} & a_2b_1 \oplus r_{2,1} & a_2b_2 \oplus r_{2,2} \end{pmatrix}$$



#### ■ Securing Multiplication IshaiSahaiWagner2003:

- ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
- Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

Illustration of ISW scheme for d=2:

$$\begin{pmatrix} a_0b_0 \oplus r_{0,0} & a_0b_1 \oplus r_{0,1} & a_0b_2 \oplus r_{0,2} \\ a_1b_0 \oplus r_{1,0} & a_1b_1 \oplus r_{1,1} & a_1b_2 \oplus r_{1,2} \\ a_2b_0 \oplus r_{2,0} & a_2b_1 \oplus r_{2,1} & a_2b_2 \oplus r_{2,2} \end{pmatrix}$$



- ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
- Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus\nolimits_i c_i = \bigl( \bigoplus\nolimits_i a_i \bigr) \bigl( \bigoplus\nolimits_i b_i \bigr) = \bigoplus\nolimits_{i,j} a_i b_j$$

■ Illustration of ISW scheme for d = 2:

$$\begin{pmatrix} a_0b_0 \oplus r_{0,0} & a_0b_1 \oplus r_{0,1} & a_0b_2 \oplus r_{0,2} \\ a_1b_0 \oplus r_{1,0} & a_1b_1 \oplus r_{1,1} & a_1b_2 \oplus r_{1,2} \\ a_2b_0 \oplus r_{2,0} & a_2b_1 \oplus r_{2,1} & a_2b_2 \oplus r_{2,2} \end{pmatrix}$$

$$c_1 \qquad c_2 \qquad c_3$$



- Securing Multiplication IshaiSahaiWagner2003:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$

Illustration of ISW scheme for d=2:

$$\begin{pmatrix} a_0b_0 \oplus r_{0,0} & a_0b_1 \oplus r_{0,1} & a_0b_2 \oplus r_{0,2} \\ a_1b_0 \oplus r_{1,0} & a_1b_1 \oplus r_{1,1} & a_1b_2 \oplus r_{1,2} \\ a_2b_0 \oplus r_{2,0} & a_2b_1 \oplus r_{2,1} & a_2b_2 \oplus r_{2,2} \end{pmatrix}$$

$$c_1 \qquad c_2 \qquad c_3$$

- Actually, we can do it with  $(d+1)^2/2$  random values instead of  $(d+1)^2$  (Ishai, Sahai, Wagner, CRYPTO 2003), and even in  $d+d^2/4$ (Belaid et al. Eurocrypt 2016).
- Problematic: Random Complexity of a d-secure multiplication?



• Write the s-box S:  $\{0,1\}^n \to \{0,1\}^m$  as a polynomial function over  $GF(2^n)$ :

$$S(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{2^n - 1} x^{2^n - 1}$$



• Write the s-box S:  $\{0,1\}^n \to \{0,1\}^m$  as a polynomial function over  $GF(2^n)$ :

$$S(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{2^n - 1} x^{2^n - 1}$$

- Four kinds of operations over  $GF(2^n)$ :
  - 1. additions
  - 2. scalar multiplications (i.e. by constants)
  - 3. squares
  - 4. regular multiplications



• Write the s-box  $S: \{0,1\}^n \to \{0,1\}^m$  as a polynomial function over  $GF(2^n)$ :

$$S(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{2^n - 1} x^{2^n - 1}$$

- Four kinds of operations over  $GF(2^n)$ :
  - 1. additions
  - 2. scalar multiplications (i.e. by constants)
  - 3. squares
  - 4. regular multiplications
- Schemes with complexity O(d) for the 3 first kinds
  - $(x+y) \longrightarrow (x_0+y_0), (x_1+y_1), \cdots, (x_d+y_d)$
  - $x^2 \longrightarrow x_0^2, x_1^2, \dots + x_d^2$
  - $a \cdot x \longrightarrow a \cdot x_0, a \cdot x_1, \cdots, a \cdot x_d$



■ Write the s-box S:  $\{0,1\}^n \to \{0,1\}^m$  as a polynomial function over  $GF(2^n)$ :

$$S(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{2^n - 1} x^{2^n - 1}$$

- Four kinds of operations over  $GF(2^n)$ :
  - 1. additions
  - 2. scalar multiplications (i.e. by constants)
  - 3. squares
  - 4. regular multiplications  $\Rightarrow$  nonlinear multiplications
- Schemes with complexity O(d) for the 3 first kinds
  - $(x+y) \longrightarrow (x_0+y_0), (x_1+y_1), \cdots, (x_d+y_d)$
  - $\longrightarrow x^2 \longrightarrow x_0^2, x_1^2, \dots + x_d^2$
  - $a \cdot x \longrightarrow a \cdot x_0, a \cdot x_1, \cdots, a \cdot x_d$
- Schemes with complexity  $O(d^2)$  for the non-linear multiplication IshaiSahaiWaaner2004



## Definition (CarletGoubinProuffQuisquaterRivain2012)

The masking complexity of S is the minimal number of non-linear multiplications needed for its evaluation.



The masking complexity of S is the minimal number of non-linear multiplications needed for its evaluation.

Problematic 1: compute the masking complexity of any S (at least bounds).



The masking complexity of S is the minimal number of non-linear multiplications needed for its evaluation.

Problematic 1: compute the masking complexity of any S (at least bounds).

Problematic 2: find evaluations methods efficient for the masking complexity criterion.



The masking complexity of S is the minimal number of non-linear multiplications needed for its evaluation.

Problematic 1: compute the masking complexity of any S (at least bounds).

Problematic 2: find evaluations methods efficient for the masking complexity criterion.

For monomials: amounts to look for short 2-addition-chain exponentiations.



The masking complexity of S is the minimal number of non-linear multiplications needed for its evaluation.

Problematic 1: compute the masking complexity of any S (at least bounds).

Problematic 2: find evaluations methods efficient for the masking complexity criterion.

For monomials: amounts to look for short 2-addition-chain exponentiations.

For polynomials: amounts to find efficient decompositions;

- Knuth-Eve algorithm VonZurGathenNoker2003
- or the Cyclotomic Method CarletGoubinProuffQuisquaterRivain2012
- or Coron-Roy-Vivek's method CoronRoyVivek2014



## Cyclotomic Method

• Cyclotomic class of  $\alpha$ :  $C_{\alpha} = \{\alpha \cdot 2^{j} \mod (2^{n} - 1); j \leq n\}$ 



- Cyclotomic class of  $\alpha$ :  $C_{\alpha} = \{\alpha \cdot 2^{j} \mod (2^{n} 1); j \leq n\}$
- $\beta \in C_{\alpha} \Leftrightarrow C_{\beta} = C_{\alpha}$ :



- Cyclotomic class of  $\alpha$ :  $C_{\alpha} = \{\alpha \cdot 2^{j} \mod (2^{n} 1); j \leq n\}$
- $\beta \in C_{\alpha} \Leftrightarrow C_{\beta} = C_{\alpha}$ :
  - $x^{\alpha}$  deduced from  $x^{\beta}$  with 0 nonlinear multiplication



- Cyclotomic class of  $\alpha$ :  $C_{\alpha} = \{\alpha \cdot 2^{j} \mod (2^{n} 1); j \leq n\}$
- $\beta \in C_{\alpha} \Leftrightarrow C_{\beta} = C_{\alpha}$ :
  - $x^{\alpha}$  deduced from  $x^{\beta}$  with 0 nonlinear multiplication
  - $x^{\alpha}$  and  $x^{\beta}$  have the same masking complexity



- Cyclotomic class of  $\alpha$ :  $C_{\alpha} = \{\alpha \cdot 2^{j} \mod (2^{n} 1); j \leq n\}$
- $\beta \in C_{\alpha} \Leftrightarrow C_{\beta} = C_{\alpha}$ :
  - $x^{\alpha}$  deduced from  $x^{\beta}$  with 0 nonlinear multiplication
  - $\rightarrow x^{\alpha}$  and  $x^{\beta}$  have the same masking complexity

$$S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + a_8 x^8 + a_9 x^9 + a_{10} x^{10} + a_{11} x^{11} + a_{12} x^{12} + \dots$$



- Cyclotomic class of  $\alpha$ :  $C_{\alpha} = \{\alpha \cdot 2^{j} \mod (2^{n} 1); j \leq n\}$
- $\beta \in C_{\alpha} \Leftrightarrow C_{\beta} = C_{\alpha}$ :
  - $x^{\alpha}$  deduced from  $x^{\beta}$  with 0 nonlinear multiplication
  - $\rightarrow x^{\alpha}$  and  $x^{\beta}$  have the same masking complexity

$$S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + a_8 x^8 + a_9 x^9 + a_{10} x^{10} + a_{11} x^{11} + a_{12} x^{12} + \dots$$



- Cyclotomic class of  $\alpha$ :  $C_{\alpha} = \{\alpha \cdot 2^{j} \mod (2^{n} 1); j \leq n\}$
- $\beta \in C_{\alpha} \Leftrightarrow C_{\beta} = C_{\alpha}$ :
  - $x^{\alpha}$  deduced from  $x^{\beta}$  with 0 nonlinear multiplication
  - $\rightarrow x^{\alpha}$  and  $x^{\beta}$  have the same masking complexity

$$S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + a_8 x^8 + a_9 x^9 + a_{10} x^{10} + a_{11} x^{11} + a_{12} x^{12} + \dots$$



- Cyclotomic class of  $\alpha$ :  $C_{\alpha} = \{\alpha \cdot 2^{j} \mod (2^{n} 1); j \leq n\}$
- $\beta \in C_{\alpha} \Leftrightarrow C_{\beta} = C_{\alpha}$ :
  - $x^{\alpha}$  deduced from  $x^{\beta}$  with 0 nonlinear multiplication
  - $\rightarrow x^{\alpha}$  and  $x^{\beta}$  have the same masking complexity

$$S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + a_8 x^8 + a_9 x^9 + a_{10} x^{10} + a_{11} x^{11} + a_{12} x^{12} + \dots$$



- Cyclotomic class of  $\alpha$ :  $C_{\alpha} = \{\alpha \cdot 2^{j} \mod (2^{n} 1); j \leq n\}$
- $\beta \in C_{\alpha} \Leftrightarrow C_{\beta} = C_{\alpha}$ :
  - $x^{\alpha}$  deduced from  $x^{\beta}$  with 0 nonlinear multiplication
  - $x^{\alpha}$  and  $x^{\beta}$  have the same masking complexity

$$S(x) = a_0 + a_1 x + a_2 x^2 + a_4 x^4 + a_8 x^8 + \dots + a_3 x^3 + a_6 x^6 + a_{12} x^{12} + a_{24} x^{24} + \dots + a_5 x^5 + a_{10} x^{10} + a_{20} x^{20} + a_{40} x^{40} + \dots + \dots$$



- Cyclotomic class of  $\alpha$ :  $C_{\alpha} = \{\alpha \cdot 2^{j} \mod (2^{n} 1); j \leq n\}$
- $\beta \in C_{\alpha} \Leftrightarrow C_{\beta} = C_{\alpha}$ :
  - $x^{\alpha}$  deduced from  $x^{\beta}$  with 0 nonlinear multiplication
  - $\rightarrow x^{\alpha}$  and  $x^{\beta}$  have the same masking complexity

$$S(x) = a_0 + a_1 x + a_2 x^2 + a_4 x^4 + a_8 x^8 + \dots + a_3 x^3 + a_6 (x^3)^2 + a_{12} (x^3)^4 + a_{24} (x^3)^8 + \dots + a_5 x^5 + a_{10} (x^5)^2 + a_{20} (x^5)^4 + a_{40} (x^5)^8 + \dots + \dots$$



- Cyclotomic class of  $\alpha$ :  $C_{\alpha} = \{\alpha \cdot 2^{j} \mod (2^{n} 1); j \leq n\}$
- $\beta \in C_{\alpha} \Leftrightarrow C_{\beta} = C_{\alpha}$ :
  - $\rightarrow x^{\alpha}$  deduced from  $x^{\beta}$  with 0 nonlinear multiplication
  - $\rightarrow x^{\alpha}$  and  $x^{\beta}$  have the same masking complexity

$$S(x) = a_0 + L_1(x) + L_3(x^3) + L_5(x^5) + \dots$$

#### where

- $L_1(X) = a_1X + a_2X^2 + a_4X^4 + a_8X^8 + \dots$
- $L_3(X) = a_3 X + a_6 X^2 + a_{12} X^4 + a_{24} X^8 + \dots$
- $L_5(X) = a_5 X + a_{10} X^2 + a_{20} X^4 + a_{40} X^8 + \dots$



Linear Sharing | + And × | Poly. Eval.

### Cyclotomic Method

To sum up:



### To sum up:

1. Compute one power per cyclotomic class  $x, x^3, x^5, x^7, \dots$ 



### To sum up:

1. Compute one power per cyclotomic class  $x, x^3, x^5, x^7, ...$ 

Linear Sharing  $| + And \times |$  Poly. Eval.

2. Evaluate the corresponding linearized polynomials  $L_i(x^i)$ 



### To sum up:

- 1. Compute one power per cyclotomic class  $x, x^3, x^5, x^7, ...$
- 2. Evaluate the corresponding linearized polynomials  $L_i(x^i)$
- 3. Then compute the sum

$$S(x) = a_0 + L_1(x) + L_3(x^3) + L_5(x^5) + L_7(x^7) + \dots$$



### To sum up:

- 1. Compute one power per cyclotomic class  $x, x^3, x^5, x^7, ...$
- 2. Evaluate the corresponding linearized polynomials  $L_i(x^i)$
- 3. Then compute the sum

$$S(x) = a_0 + L_1(x) + L_3(x^3) + L_5(x^5) + L_7(x^7) + \dots$$

#### Carlet Goubin Prouff Quisquater Rivain 2012

Number of nonlinear multiplications

 $\#\{\text{cyclotomic classes involved in S}\}\setminus (C_0 \cup C_1)$ 



$$S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + a_8 x^8 + a_9 x^9 + a_{10} x^{10} + a_{11} x^{11} + a_{12} x^{12} + \dots$$



$$S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + a_8 x^8 + a_9 x^9 + a_{10} x^{10} + a_{11} x^{11} + a_{12} x^{12} + \dots$$



$$S(x) = a_0 + a_2 x^2 + a_4 x^4 + a_6 x^6 + a_8 x^8 + \dots$$
$$a_1 x + a_3 x^3 + a_5 x^5 + a_7 x^7 + a_9 x^9 + \dots$$



$$S(x) = a_0 + a_2 x^2 + a_4 x^4 + a_6 x^6 + a_8 x^8 + \dots$$
$$(a_1 + a_3 x^2 + a_5 x^4 + a_7 x^6 + a_9 x^8 + \dots) \cdot x$$



$$S(x) = a_0 + a_2 x^2 + a_4 x^4 + a_6 x^6 + a_8 x^8 + \dots$$
$$(a_1 + a_3 x^2 + a_5 x^4 + a_7 x^6 + a_9 x^8 + \dots) \cdot x$$



$$S(x) = a_0 + a_2 X + a_4 X^2 + a_6 X^3 + a_8 X^4 + \dots$$
$$(a_1 + a_3 X + a_5 X^2 + a_7 X^3 + a_9 X^4 + \dots) \cdot x$$
where  $X = x^2$ 



$$S(x) = a_0 + a_2 X + a_4 X^2 + a_6 X^3 + a_8 X^4 + \dots$$
$$(a_1 + a_3 X + a_5 X^2 + a_7 X^3 + a_9 X^4 + \dots) \cdot x$$
where  $X = x^2$ 



$$S(x) = a_0 + a_4 X^2 + a_8 X^4 + \ldots + a_2 X + a_6 X^3 + \ldots$$
$$(a_1 + a_5 X^2 + a_9 X^4 + \ldots + a_3 x^2 + a_7 X^3 + \ldots) \cdot x$$
where  $X = x^2$ 



$$S(x) = a_0 + a_4 X^2 + a_8 X^4 + \dots + (a_2 + a_6 X^2 + \dots) \cdot X + (a_1 + a_5 X^2 + a_9 X^4 + \dots + (a_3 + a_7 X^2 + \dots) \cdot X) \cdot x$$
where  $X = x^2$ 



$$S(x) = a_0 + a_4 x^4 + a_8 x^8 + \dots + (a_2 + a_6 x^4 + \dots) \cdot x^2 + (a_1 + a_5 x^4 + a_9 x^8 + \dots + (a_3 + a_7 x^4 + \dots) \cdot x^2) \cdot x$$



$$S(x) = a_0 + a_4 X + a_8 X^2 + \ldots + (a_2 + a_6 X + \ldots) \cdot x^2 + (a_1 + a_5 X + a_9 X^2 + \ldots + (a_3 + a_7 X + \ldots) \cdot x^2) \cdot x$$
where  $X = x^4$ 



$$S(x) = a_0 + a_4 X + a_8 X^2 + \dots + (a_2 + a_6 X + \dots) \cdot x^2 + (a_1 + a_5 X + a_9 X^2 + \dots + (a_3 + a_7 X + \dots) \cdot x^2) \cdot x$$
where  $X = x^4$ 

■ Nonlinear mult. :  $1+2+\cdots+2^{r-1}=2^r-1$ 



$$S(x) = a_0 + a_4 X + a_8 X^2 + \ldots + (a_2 + a_6 X + \ldots) \cdot x^2 + (a_1 + a_5 X + a_9 X^2 + \ldots + (a_3 + a_7 X + \ldots) \cdot x^2) \cdot x$$
where  $X = x^4$ 

- Nonlinear mult. :  $1+2+\cdots+2^{r-1}=2^r-1$
- and the evaluation of  $2^{r+1}$  polynomials in  $X = x^{2^r}$



$$S(x) = a_0 + a_4 X + a_8 X^2 + \ldots + (a_2 + a_6 X + \ldots) \cdot x^2 + (a_1 + a_5 X + a_9 X^2 + \ldots + (a_3 + a_7 X + \ldots) \cdot x^2) \cdot x$$
where  $X = x^4$ 

- Nonlinear mult. :  $1+2+\cdots+2^{r-1}=2^r-1$
- and the evaluation of  $2^{r+1}$  polynomials in  $X = x^{2^r}$ 
  - we derive  $X^j$  for  $i < 2^{n-r}$



$$S(x) = a_0 + a_4 X + a_8 X^2 + \ldots + (a_2 + a_6 X + \ldots) \cdot x^2 + (a_1 + a_5 X + a_9 X^2 + \ldots + (a_3 + a_7 X + \ldots) \cdot x^2) \cdot x$$
where  $X = x^4$ 

- Nonlinear mult. :  $1+2+\cdots+2^{r-1}=2^r-1$
- and the evaluation of  $2^{r+1}$  polynomials in  $X = x^{2^r}$ 
  - we derive  $X^j$  for  $j < 2^{n-r}$
  - $\triangleright$   $2^{n-r-1}-1$  nonlinear mult.



$$S(x) = a_0 + a_4 X + a_8 X^2 + \ldots + (a_2 + a_6 X + \ldots) \cdot x^2 + (a_1 + a_5 X + a_9 X^2 + \ldots + (a_3 + a_7 X + \ldots) \cdot x^2) \cdot x$$
where  $X = x^4$ 

- Nonlinear mult. :  $1+2+\cdots+2^{r-1}=2^r-1$
- and the evaluation of  $2^{r+1}$  polynomials in  $X = x^{2^r}$ 
  - we derive  $X^j$  for  $i < 2^{n-r}$
  - $\triangleright$   $2^{n-r-1}-1$  nonlinear mult.

$$\Rightarrow 2^{n-r-1} + 2^r - 2$$
 nonlinear mult.



Linear Sharing | + And × | Poly. Eval.

Coron-Roy-Viveks (CRV) Method



- Build s cyclotomic classes  $C_i$  s.t.  $\{X^i; a_i \neq 0\} \subseteq C + C$  with  $C = \bigcup_i C_i$ .
  - $\triangleright$  define  $\mathcal{P}$  as the set of polynomials with monomials in C only.



- Build s cyclotomic classes  $C_i$  s.t.  $\{X^i; a_i \neq 0\} \subseteq C + C$  with  $C = \bigcup_i C_i$ .
- $\triangleright$  define  $\mathcal{P}$  as the set of polynomials with monomials in C only.
- Fix t polynomials  $q_i(x) \in \mathcal{P}$  and find t+1 polynomials  $p_i(x) \in \mathcal{P}$ s.t.

$$S(x) = \sum_{i=1}^{t} p_i(x) \times q_i(x) + p_t(x)$$



- Build s cyclotomic classes  $C_i$  s.t.  $\{X^i; a_i \neq 0\} \subseteq C + C$  with  $C = \bigcup_i C_i$ .
  - $\triangleright$  define  $\mathcal{P}$  as the set of polynomials with monomials in C only.
- Fix t polynomials  $q_i(x) \in \mathcal{P}$  and find t+1 polynomials  $p_i(x) \in \mathcal{P}$ s.t.

$$S(x) = \sum_{i=1}^{t} p_i(x) \times q_i(x) + p_t(x)$$

Number of non-linear multiplications N = s + t - 2 s.t.:

$$N \geqslant 2\sqrt{\frac{2^n}{n}} .$$



- Build s cyclotomic classes  $C_i$  s.t.  $\{X^i; a_i \neq 0\} \subseteq C + C$  with  $C = \bigcup_i C_i$ .
  - $\triangleright$  define  $\mathcal{P}$  as the set of polynomials with monomials in C only.
- Fix t polynomials  $q_i(x) \in \mathcal{P}$  and find t+1 polynomials  $p_i(x) \in \mathcal{P}$ s.t.

$$S(x) = \sum_{i=1}^{t} p_i(x) \times q_i(x) + p_t(x)$$

Number of non-linear multiplications N = s + t - 2 s.t.:

$$N \geqslant 2\sqrt{\frac{2^n}{n}} .$$

Note: there always exists a polynomial whose evaluation requires at least  $\sqrt{\frac{2^n}{n}} - 2$  non-linear multiplications  ${\it CoronRoy Vivek}$  SAFRAN Emmanuel PROUFF - MORPHO / Journées du GDR-IM 2017 • CRV's method amounts to solve the linear system:

$$\begin{cases} \sum_{i=1}^{t} p_i(e_1) \times q_i(e_1) &+ p_{t+1}(e_1) &= S(e_1) \\ \sum_{i=1}^{t} p_i(e_2) \times q_i(e_2) &+ p_{t+1}(e_2) &= S(e_2) \end{cases}$$

$$\vdots$$

$$\sum_{i=1}^{t} p_i(e_{2^n}) \times q_i(e_{2^n}) &+ p_{t+1}(e_{2^n}) &= S(e_{2^n})$$
with (around)  $(t+1) \times n \times s$  unknowns and  $2^n$  equations.



• CRV's method amounts to solve the linear system:

$$\begin{cases} \sum_{i=1}^{t} p_{i}(e_{1}) \times q_{i}(e_{1}) &+ p_{t+1}(e_{1}) &= S(e_{1}) \\ \sum_{i=1}^{t} p_{i}(e_{2}) \times q_{i}(e_{2}) &+ p_{t+1}(e_{2}) &= S(e_{2}) \\ \vdots & & & \\ \sum_{i=1}^{t} p_{i}(e_{2^{n}}) \times q_{i}(e_{2^{n}}) &+ p_{t+1}(e_{2^{n}}) &= S(e_{2^{n}}) \end{cases}$$

with (around)  $(t+1) \times n \times s$  unknowns and  $2^n$  equations.

Necessary condition:

$$(t+1) \times n \times s \geqslant 2^n$$
.

In practice, the condition was sufficient.



# Asymptotic Complexities

- Cyclotomic Method:  $O(\frac{2^n-1}{n}d^2)$ .
- Knuth-Eve's Method:  $O(2^{n/2}d^2)$ .
- Coron-Roy-Vivek's Method (heuristic):  $O(\sqrt{\frac{2^n}{n}}d^2)$

## Practical (worst case) Complexities

| n          | 4 | 5 | 6  | 7  | 8  | 9  | 10  |
|------------|---|---|----|----|----|----|-----|
| Knuth-Eve  | 3 | 5 | 11 | 17 | 33 | 52 | 105 |
| Cyclotomic | 4 | 6 | 10 | 14 | 22 | 30 | 46  |
| CRV        | 2 | 4 | 5  | 7  | 10 | 14 | 19  |



Linear Sharing | + And × | Poly. Eval.





# Secure Evaluation of a Polynomial h(x) with algebraic degree s

h(x) a polynomial with algebraic degree s

$$h\left(\sum_{i=1}^{d} a_i\right) = \sum_{\substack{j \le s \\ |I| = i}} c_j \sum_{\substack{I \subseteq [1;d] \\ |I| = i}} h\left(\sum_{i \in I} a_i\right) ,$$

where  $c_i$  are constant binary coefficients.



# Secure Evaluation of a Polynomial h(x) with algebraic degree s

h(x) a polynomial with algebraic degree s

$$h\left(\sum_{i=1}^{d} a_i\right) = \sum_{\substack{j \le s \\ |I| = j}} c_j \sum_{\substack{I \subseteq [1;d] \\ |I| = j}} h\left(\sum_{i \in I} a_i\right) ,$$

where  $c_i$  are constant binary coefficients.

Hence: securing at order d reduces to securing at order s.



# Secure Evaluation of a Polynomial h(x) with algebraic degree s

h(x) a polynomial with algebraic degree s

$$h\left(\sum_{i=1}^{d} a_i\right) = \sum_{\substack{j \le s \\ |I| = j}} c_j \sum_{\substack{I \subseteq [1;d] \\ |I| = j}} h\left(\sum_{i \in I} a_i\right) ,$$

where  $c_i$  are constant binary coefficients.

Hence: securing at order d reduces to securing at order s. Leads to the secure evaluation methods with complexity  $O(d^s)$ .



power of its monomials (with non-zero coefficients).

Secure Evaluation of a Polynomial h(x) with algebraic degree s

algebraic degree of a polynomial: greatest Hamming weight of the

h(x) a polynomial with algebraic degree s

$$h\left(\sum_{i=1}^{d} a_i\right) = \sum_{\substack{j \le s \\ |I| = j}} c_j \sum_{\substack{I \subseteq [1;d] \\ |I| = j}} h\left(\sum_{i \in I} a_i\right) ,$$

where  $c_i$  are constant binary coefficients.

Hence: securing at order d reduces to securing at order s. Leads to the secure evaluation methods with complexity  $O(d^s)$ . Example: securing degree-2 functions is as complex as securing a multiplication (with ISW scheme).



algebraic degree of a polynomial: greatest Hamming weight of the power of its monomials (with non-zero coefficients).

Linear Sharing | + And X | Poly. Eval.

# Secure Evaluation of a Polynomial h(x) with algebraic degree s

h(x) a polynomial with algebraic degree s

$$h\left(\sum_{i=1}^{d} a_i\right) = \sum_{\substack{j \le s \\ |I| = j}} c_j \sum_{\substack{I \subseteq [1;d] \\ |I| = j}} h\left(\sum_{i \in I} a_i\right) ,$$

where  $c_i$  are constant binary coefficients.

Hence: securing at order d reduces to securing at order s.

Leads to the secure evaluation methods with complexity  $O(d^s)$ .

Example: securing degree-2 functions is as complex as securing a multiplication (with ISW scheme).

Efficient (compared to SoA) for small s or  $n \ll d^s$ .





• We need algorithmic countermeasures with formal proof of resistance.



- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.



- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.



- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.
- Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.



- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.
- Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.
- Many open issues...



- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.
- Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.
- Many open issues...
  - ► Improve proof techniques (automatize them?)



- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.
- Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.
- Many open issues...
  - ► Improve proof techniques (automatize them?)
  - ▶ Improve existing techniques / adapt them to the SCA context (e.g. decrease the complexity to securely process the multiplication)



- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.
- Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.
- Many open issues...
  - ► Improve proof techniques (automatize them?)
  - ▶ Improve existing techniques / adapt them to the SCA context (e.g. decrease the complexity to securely process the multiplication)
  - ▶ Reduce the randomness consumption of existing techniques



- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.
- Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.
- Many open issues...
  - ► Improve proof techniques (automatize them?)
  - ▶ Improve existing techniques / adapt them to the SCA context (e.g. decrease the complexity to securely process the multiplication)
  - ▶ Reduce the randomness consumption of existing techniques
  - Find Efficient Evaluation methods.



- We need algorithmic countermeasures with formal proof of resistance.
- We need formal models fitting the physical reality of devices AND enabling relatively simple proofs.
- Countermeasures must be efficient AND resistant against powerful adversaries.
- Links with many other rich fields: ECC, MPC, efficient processing in short characteristic, etc.
- Many open issues...
  - ► Improve proof techniques (automatize them?)
  - ▶ Improve existing techniques / adapt them to the SCA context (e.g. decrease the complexity to securely process the multiplication)
  - ▶ Reduce the randomness consumption of existing techniques
  - Find Efficient Evaluation methods.
  - ▶ For TI, find generic constructions secure at order d



Thank you for your attention! Questions/Remarks?

