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Devices leak information...| Problematics|

Probability distribution function (pdf) of Electromagnetic
Emanations

Z = S(X + k) with X = 0 and k = 3.
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Probability distribution function (pdf) of Electromagnetic
Emanations

Z = S(X + k) with X = 0 and k = 4.
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Devices leak information...| Problematics|

Probability distribution function (pdf) of Electromagnetic
Emanations

Z = S(X + k) with X = 0 and k ∈ {1, 2, 3, 4}.
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Devices leak information...| Problematics|

Side Channel Attacks (SCA)

Against each cryptosystem and each implementation, find the
most efficient SCA.

I Efficiency of an SCA?
I Which attack parameters to improve?
I SCA common trends?
I Attacks versus Characterization!

Countermeasures

For each cryptosystem, find efficient/effective countermeasures.
I Formally define the fact that a countermeasure thwarts an SCA?
I Which countermeasure for which SCA?
I What makes a cryptosystem more vulnerable to SCA than another?
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Introduction| Security Models| Constructions| Conclusions And Perspectives|

Introduction| Adversary Game|

Main Remark: SCA efficiency depends on the amount of noise in
the observation.

L = ϕ(Z) + N︸︷︷︸
Noise

Core Idea: define mechanisms to .
I increase the noise variance.
I force the adversary to himself decrease the SNR.

Secret Sharing: randomly split Z into d shares Z1, ..., Zd:
I all the Li are needed to get information on Z!
I hence the adversary must combine all the Li
I lead to multiply the Ni altogether and to merge information and

noise in a complex way.
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Introduction| Adversary Game|

Adversary Game

In the implementation, find d or less intermediate variables that
jointly depend on a secret variable Z.

Developer Game

Translate (Compile?) an implementation into a new one defeating the
adversary.

Implementation = sequence of elementary operations which read
a memory location and write its result in another memory
location.
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Introduction| Security Models| Constructions| Conclusions And Perspectives|

First Issue: how to share sensitive data?

Related to:
I secret sharing Shamir79
I design of error correcting codes with large

dual distance
Massey93,CastagnosRennerZémor13

I etc.

Second Issue: how to securely process on
shared data?

Related to:
I secure multi-party computation

NikovaRijmenSchläffer2008 ProuffRoche2011
I circuit processing in presence of leakage e.g.

GoldwasserRothblum2012
I efficient polynomial evaluation e.g.

CarletGoubinProuffQuisquater-

Rivain2012,CoronProuffRoche2012,CoronRoyVivek2014
I etc.
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Linear Sharing| + And ×| Poly. Eval.|

Linear Secret Sharing with parameters n and d:
I n elements Zi such that

Z =
∑
i

Zi

I no sub-family of d− 1 Zi depends on Z.

Massey (1993):

designing an (n, d) linear secret sharing
⇐⇒

building a code with length n+ 1 and dual distance d

Yes, interesting, but ... who cares?
I gives a general framework to describe and analyse all linear

sharing schemes
I links our problems with those of a rich community
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Linear Sharing| + And ×| Poly. Eval.|

Linear Sharing = Encoding

(
Z R1 . . . Rk−1

)
×


1 0 0 0 α1,k . . . α1,n

0 1 0 0 α2,k . . . α2,n
...

...
. . .

...
...

. . .
...

0 0 0 1 αk,k . . . αk,n


=

(
Z Z1 . . . Zk−1 Zk . . . Zn

)

implies for every i ∈ [1..k]:

Z = H−1i,0

n∑
j=1

Zj ×Hi,j .

where ~Hi
.
= (Hi,0, · · · , Hi,n)ᵀ.

masking/sharing order < min(a1,··· ,ak)∈Fk
2

HW(
∑

i ai
~Hi)− 1

Actually masking order= min(a1,··· ,ak)∈Fk
2

HW(
∑

i ai
~Hi)− 1

Massey93
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Linear Sharing| + And ×| Poly. Eval.|

Boolean Sharing: encoding with the matrix

G =


1 0 0 0 1
0 1 0 0 1
...

...
. . .

...
...

0 0 0 1 1


implies k = n− 1.

Shamir’s secret Sharing:
I generate a random degree-d polynomial P (X) such that P (0) = Z
I build the Zi such that Zi = P (αi) for n ≥ 2d different public

values αi.

... amounts to define a Reed-Solomon code with parameters
[n+ 1, d+ 1, ·] McElieceSarwate81.
Main issue: minimize n for a given d.
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Linear Sharing| + And ×| Poly. Eval.|

Securing elementary Operations:

Original idea by Ishai-Sahai-Wagner: limited to GF(2)
Extended to any field in RivainProuff2010 and
FaustRabinReyzinTromerVaikuntanathan2011

Based on Boolean Sharing: Z = Z0 ⊕ Z1 ⊕ . . . Zd
Securing linear functions L:

Z0 Z1 · · · Zd
↓ ↓ ↓ ↓

L(Z0) L(Z1) · · · L(Zd)

Much more difficult for non-linear functions (i.e. multiplication)
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Securing Multiplication IshaiSahaiWagner2003:

I Input: (ai)i, (bi)i s.t.
⊕

i ai = a,
⊕

i bi = b
I Output: (ci)i s.t.

⊕
i ci = ab

⊕
i
ci =

(⊕
i
ai
)(⊕

i
bi
)

=
⊕

i,j
aibj

Illustration of ISW scheme for d = 2:

a0b0 (a0b1 ⊕ r1,2)⊕ a1b0 (a0b2 ⊕ r1,3)⊕ a2b0
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(Belaid et al, Eurocrypt 2016).
Problematic: Random Complexity of a d-secure multiplication?
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Securing any Polynomial evaluation

Write the s-box S : {0, 1}n → {0, 1}m as a polynomial function
over GF(2n):

S(x) = a0 + a1x+ a2x
2 + · · ·+ a2n−1x

2n−1

Four kinds of operations over GF(2n):
1. additions
2. scalar multiplications (i.e. by constants)
3. squares
4. regular multiplications

⇒ nonlinear multiplications

Schemes with complexity O(d) for the 3 first kinds
I (x+ y) −→ (x0 + y0), (x1 + y1), · · · , (xd + yd)
I x2 −→ x20, x

2
1, · · ·+ x2d

I a · x −→ a · x0, a · x1, · · · , a · xd

Schemes with complexity O(d2) for the non-linear multiplication
IshaiSahaiWagner2004
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Definition (CarletGoubinProuffQuisquaterRivain2012)

The masking complexity of S is the minimal number of non-linear
multiplications needed for its evaluation.

Problematic 1: compute the masking complexity of any S (at least
bounds).

Problematic 2: find evaluations methods efficient for the masking
complexity criterion.

For monomials: amounts to look for short 2-addition-chain
exponentiations.

For polynomials: amounts to find efficient decompositions;

Knuth-Eve algorithm VonZurGathenNoker2003

or the Cyclotomic Method CarletGoubinProuffQuisquaterRivain2012

or Coron-Roy-Vivek’s method CoronRoyVivek2014
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Cyclotomic Method

Cyclotomic class of α : Cα = {α · 2j mod (2n − 1); j ≤ n}

β ∈ Cα ⇔ Cβ = Cα:

I xα deduced from xβ with 0 nonlinear multiplication
I xα and xβ have the same masking complexity

S(x)

where
I L1(X) = a1X + a2X

2 + a4X
4 + a8X

8 + . . .
I L3(X) = a3X + a6X

2 + a12X
4 + a24X

8 + . . .
I L5(X) = a5X + a10X

2 + a20X
4 + a40X

8 + . . .
I ...
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Cyclotomic Method

To sum up:

1. Compute one power per cyclotomic class x, x3, x5, x7, ...
2. Evaluate the corresponding linearized polynomials Li(x

i)
3. Then compute the sum

S(x) = a0 + L1(x) + L3(x
3) + L5(x

5) + L7(x
7) + . . .

CarletGoubinProuffQuisquaterRivain2012

Number of nonlinear multiplications
=

#{cyclotomic classes involved in S}\(C0 ∪ C1)
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Knuth-Eve’s Method for SBox Evaluation

S(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7

+ a8x
8 + a9x

9 + a10x
10 + a11x

11 + a12x
12 + . . .

where X = x2

Nonlinear mult. : 1

and the evaluation of 2r+1 polynomials in X = x2
r

I we derive Xj for j < 2n−r

I 2n−r−1 − 1 nonlinear mult.

⇒ 2n−r−1 + 2r − 2 nonlinear mult.
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Coron-Roy-Viveks (CRV) Method

Build s cyclotomic classes Ci s.t. {Xi; ai 6= 0} ⊆ C + C with
C =

⋃
iCi.

I define P as the set of polynomials with monomials in C only.

Fix t polynomials qi(x) ∈ P and find t+ 1 polynomials pi(x) ∈ P
s.t.

S(x) =
t∑
i=1

pi(x)× qi(x) + pt(x)

Number of non-linear multiplications N = s+ t− 2 s.t.:

N > 2

√
2n

n
.

Note: there always exists a polynomial whose evaluation requires

at least
√

2n

n − 2 non-linear multiplications CoronRoyVivek14.
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CRV’s method amounts to solve the linear system:
∑t

i=1 pi(e1)× qi(e1) + pt+1(e1) = S(e1)∑t
i=1 pi(e2)× qi(e2) + pt+1(e2) = S(e2)

...∑t
i=1 pi(e2n)× qi(e2n) + pt+1(e2n) = S(e2n)

with (around) (t+ 1)× n× s unknowns and 2n equations.

Necessary condition:
(t+ 1)× n× s > 2n .

In practice, the condition was sufficient.
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Asymptotic Complexities

Cyclotomic Method: O(2
n−1
n d2).

Knuth-Eve’s Method: O(2n/2d2).

Coron-Roy-Vivek’s Method (heuristic): O(
√

2n

n d
2)

Practical (worst case) Complexities

n 4 5 6 7 8 9 10

Knuth-Eve 3 5 11 17 33 52 105

Cyclotomic 4 6 10 14 22 30 46

CRV 2 4 5 7 10 14 19
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Linear Sharing| + And ×| Poly. Eval.|

algebraic degree of a polynomial: greatest Hamming weight of the
power of its monomials (with non-zero coefficients).

Secure Evaluation of a Polynomial h(x) with algebraic degree s

h(x) a polynomial with algebraic degree s

h
( d∑
i=1

ai

)
=
∑
j≤s

cj
∑

I⊆[1;d]
|I|=j

h
(∑
i∈I

ai

)
,

where cj are constant binary coefficients.

Hence: securing at order d reduces to securing at order s.
Leads to the secure evaluation methods with complexity O(ds).
Example: securing degree-2 functions is as complex as securing a
multiplication (with ISW scheme).
Efficient (compared to SoA) for small s or n� ds.
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Conclusions

We need algorithmic countermeasures with formal proof of
resistance.
We need formal models fitting the physical reality of devices
AND enabling relatively simple proofs.
Countermeasures must be efficient AND resistant against
powerful adversaries.
Links with many other rich fields: ECC, MPC, efficient
processing in short characteristic, etc.
Many open issues...

I Improve proof techniques (automatize them?)
I Improve existing techniques / adapt them to the SCA context (e.g.

decrease the complexity to securely process the multiplication)
I Reduce the randomness consumption of existing techniques
I Find Efficient Evaluation methods
I For TI, find generic constructions secure at order d
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Thank you for your attention!
Questions/Remarks?
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